جغرافیا و برنامه ریزی محیطی، جلد ۳۱، شماره ۳، صفحات ۴۱-۶۰

عنوان فارسی امکان‌سنجی راهبرد زیست‌محیطی شهر کربن صفر در شهرکرد
چکیده فارسی مقاله تغییرات آب‌وهوایی درنتیجه انتشار گازهای گلخانه‌ای ناشی از فعالیت‌های انسانی و گسترش شهرنشینی، شرایط زیست انسان را روی کره زمین با چالش‌های جدی روبه‌رو کرده است. پژوهش حاضر به‌لحاظ هدف، کاربردی و ازلحاظ روش‌شناسی، توصیفی‌تحلیلی مبتنی بر مطالعات کتابخانه‌ای و بررسی‌های میدانی و تحلیل پرسش‌نامه‌ای است. برای دستیابی به اهداف پژوهش، شاخص‌‌هایی در هشت دسته با توجه به اهداف پژوهش استخراج شد. با استفاده از فرمول کوکران، 100 نفر از متخصصان حوزه محیط‌زیست شهری به‌مثابه نمونه پژوهش تعیین شدند؛ سپس با استفاده از روش ترکیبی Anp-Dematil ، مهم‌ترین معیارها و شاخص‌های زیست‌محیطی شهر کربن صفر در شهرکرد رتبه‌بندی شد. برای اندازه‌گیری ردپای بوم‌شناختی در شهرکرد از نرم‌افزارIPCC استفاده شد. برمبنای نتایج بررسی شاخص‌های مؤثر بر استقرار شهر کم‌کربن در شهرکرد، شاخص‌های خلاقیت زیست‌محیطی و طراحی منظر شهری به‌مثابه پایدارترین شاخص‌ها و شاخص انرژی به‌مثابه ناپایدارترین شاخص‌ شناخته شدند؛ همچنین برای تعیین ردپای بوم‌شناختی از سرانه انتشار دی‌اکسیدکربن شهرکرد در سال 1396، 4.51 تن، بهره گرفته شد که در مقایسه با مقیاس جهان که 4.47 تن است، بیشتر و در مقایسه با مقیاس ایران که 6.76 تن در سال است، کمتر است. نتایج نشان داد ردپای بوم‌شناختی کربن در شهرکرد فراتر از میانگین جهانی و کمتر از میانگین ایران است.
کلیدواژه‌های فارسی مقاله شهر زیست‌محیطی کربن صفر، ردپای بوم‌شناختی، مدل‌سازی ساختاری PLS، IPCC، شهرکرد،

عنوان انگلیسی The Feasibility of the Environmental Strategy of Zero Carbon City in Shahrekord
چکیده انگلیسی مقاله Extended abstract 1- Introduction: One of the most important environmental issues is global climate change caused by the accumulation of greenhouse gases. In today's technological society, with the expansion of industrial activities, the increase in population growth, and urbanization, and the need for greater utilization of limited natural resources, pollution is increasing, especially in developing countries that do not have high technology to reduce air pollution and emission of pollutants. One of the most important of these pollutants is the role of greenhouse gas pollution. Greenhouse gases, including vapor, carbon dioxide, methane, nitrogen dioxide, monoxide, and ozone, which are natural emissions, are important for survival and only when their concentrations exceed the permissible limit. But it is human activity that has increased the levels of many of these gases. Iran is one of the first greenhouse-gas producing countries to change its temperature pattern, reduce water resources, increase seas, degrade coastal areas, destroy crops and food, destroy forests, alternate and intensify droughts. Greenhouse gases are naturally occurring in the atmosphere, but human activities and pollution caused by these activities increase the amount of gases abruptly. One of the new strategies for urban environmental sustainability and pollution control is the zero-carbon city, which is necessary for the sustainable development and development of each city. 2- Methodology: The present study is of theoretical, practical, and descriptive-analytical research methodology. The main objective of the study is to investigate the feasibility of the environmental strategy of the Zero-carbon city in Shahrekord. In this research, after the extraction of the indices, the Anp-Dematil combination method is the most important criterion and the environmental indicator of the Zero-carbon city in Shahrekord. Then, IPCC software was used to measure the ecological footprint in Shahrekord and was used for mapping the carbon dioxide dispersion map from the spatial satellite GIS Arc applications. 3– Discussion: The results of the present study indicate that the relative weights of indicators in Shahrekord have an environmental creativity index of 0.298, and urban design with a weight of 0.229 is among the most important and most stable index. The energy index with a weight of 0.107 is considered the most unstable index. The environmental index was recognized in this city. Also, to determine the ecological footprint of Shahrekord's carbon dioxide emissions per year (2018), 4.51 tons of carbon dioxide emissions are used. This amount is higher than the world scale, which is 4.47 tons and is lower compared to the Iranian scale, which is 6.76 tons per year. 4– Conclusion: The IPCC results showed that the energy index had the highest carbon dioxide production, increasing over a five-year period from 380983 tons in 2013 to 497237 tons in 2018 years, with transport reaching 119561 tons in 2013 to 275363 tons in 2018. Industry ranks third, from 24,292 tons in the year 2013 to 43,409 tons in 2018, and lastly from 5799 tons in 2013 to 12,136 tons in 2018. The crop has been the agricultural index which has declined from 36542 tons in 2013 to 25284 tons in 2018. Finally, using the national and international carbon dioxide emissions figures from the 2015 International Energy Agency report, we can say that Shahrekord's carbon dioxide emissions per capita in 2014 is 4.51 tons compared to the world scale of 4.47 tons. It is higher and lower than the Iranian scale of 6.76 tons per year. The results showed that the carbon footprint in Shahrekord is above the global average and lower than the Iranian average. Besides, the ecological footprint of carbon in Shahrekord is above the global average and below the Iranian average. The use of environmental strategies such as increasing urban green space and replacing renewable energy sources with fossil fuels in the city can be inadequate to reach the low carbon city in Shahrekord. Keywords: Environmental Zero Carbon City, Ecological Footprints, IPCC, Shahrekord. References: - Assefa, G., & Frostell, B. (2007). Social Sustainability and Social Acceptance in Technology Assessment: A Case Study of Energy Technologies. Technology in Society, 29(1): 63–78. - Baynes, T. M., & Wiedmann, T. (2012). General Approaches for Assessing Urban Environmental Sustainability. Current Opinion in Environmental Sustainability, 4(4): 458-464. - Brandon, P. S., & Patrizia, L. (2005). Evaluating Sustainable Development in the Built Environment. Oxford: Blackwell. - Chavez, A., & Ramaswami, A. (2013). Articulating a Trans-Boundary Infrastructure Supply Chain Greenhouse Gas Emission Footprint for Cities: Mathematical Relationships and Policy Relevance. Energy Policy, 54, 376-384. - Chu, X., Deng, X., Jin, G., Wang, Z., & Li, Z. (2017). Ecological Security Assessment Based on Ecological Footprint Approach in Beijing-Tianjin-Hebei Region, China. Physics and Chemistry of the Earth, Parts A/B/C, 101, 43-51. - Eckel, A. (2007). The Reality of Carbon Neutrality. Energetics, 21(2): 35-36. - Fong, W. K., Matsumoto, H., Ho, C. S., & Lun, Y. F. (2008). Energy Consumption and Carbon Dioxide Emission Considerations in the Urban Planning Process in Malaysia. The Journal of the Malaysia Institute of Planners, 6(1). - Grubb, E., & Ellis, C. (2007). Meeting the Carbon Challenge: The Role of Commercial Real Estate Owners. Chicago: Users and Managers. - Heinonen, J., & Junnila, S. (2011). A Carbon Consumption Comparison of Rural and Urban Lifestyles. Sustainability, 3(8): 1234-1249. - Hussain, M., Malik, R. N., & Taylor, A. (2017). Carbon Footprint as an Environmental Sustainability Indicator for the Particleboard Produced in Pakistan. Environmental Research, 155, 385-393. - IEA., World Energy Outlook. (2008). Fact Sheet. Paris: International Energy Agency. - Kennedy, S., & Sgouridis, S. (2011). Rigorous Classification and Carbon Accounting Principles for Low and Zero Carbon Cities. Energy Policy, 39(9): 5259-5268. - Li, X., Tian, M., Wang, H., Wang, H., & Yu, J. (2014). Development of an Ecological Security Evaluation Method Based on the Ecological Footprint and Application to a Typical Steppe Region in China. Ecological Indicators, 39, 153-159. - Mac, D., & Gordon, J. (2005). Environment: Evolution of a Concept-International Institute for Applied Systems Analysis. (IIASA). Page1. - Neira, M., Prüss-Ustün, A., & Mudu, P. (2018). Reduce Air Pollution to Beat NCDs: From Recognition to Action. Lancet (London, England), 392(10154), 1178. - Orosa, J. A. (Ed.). (2011). Indoor and Outdoor Air Pollution. Cambridge: BoD–Books on Demand. - Pandey, D., Agrawal, M. & Pandey, J. S. (2011). Carbon Footprint: Current Methods of Estimation. Environmental Monitoring and Assessment, 178 (1-4): 135-160. - Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon Footprint: Current Methods of Estimation. Environmental Monitoring and Assessment, 178(1-4), 135-160. - Steijger, L. A., Buswell, R. A., Smedley, V. A., Firth, S. K., & Rowley, P. (2013). Establishing the Zero-Carbon Performance of Compact Urban Dwellings. Journal of Building Performance Simulation, 6(4), 319-334. - Straatman, B., Boyd, B., Mangalagiu, D., Rathje, P., Madsen, C., Madsen, B., & Rasmussen, S. (2015). The Carbon City Index (CCI): A Consumption Based, Regional Input-Output Analysis of Carbon Emissions. (n.p). - Su, M. R., Chen, B., Xing, T., Chen, C., & Yang, Z. F. (2012). Development of Low-Carbon City in China: Where Will It Go?. Procedia Environmental Sciences, 13, 1143-1148. - Tjan, W., Tan, R. R., & Foo, D. C. (2010). A Graphical Representation of Carbon Footprint Reduction for Chemical Processes. Journal of Cleaner Production, 18(9), 848-856. - Walker, G., Karvonen, A., & Guy, S. (2015). Zero Carbon Homes and Zero Carbon Living: Sociomaterial Interdependencies in Carbon Governance. Transactions of the Institute of British Geographers, 40(4), 494-506. - Wiedmann, T., Minx, J. (2008). A Definition of 'Carbon Footprint'. In: Pertsova, C. C. (2008). Ecological Economics Research Trends. Chapter 1, 1-11. - Williams, I., Kemp, S., Coello, J., Turner, D. A., & Wright, L. A. (2012). A Beginner’s Guide to Carbon Foot Printing, Carbon Management, 3, 55–67. - World Bank and Institute for Health Metrics and Evaluation. (2016). The Cost of Air Pollution: Strengthening the Economic Case for Action. Washington DC: World Bank. License: Creative Commons Attribution CC BY 3.0 IGO. - Zhao, Y., Onat, N. C., Kucukvar, M., & Tatari, O. (2016). Carbon and Energy Footprints of Electric Delivery Trucks: A Hybrid Multi-Regional Input-Output Life Cycle Assessment. Transportation Research Part D: Transport and Environment, 47, 195-207. - Liu, Z. H., Yu, J. H., & Zhang, D. (2011). Study on Low-Carbon Building Ecological City Construction in Harmonious Beibu Gulf Culture. Procedia Environmental Sciences, 10, 1881-1886.
کلیدواژه‌های انگلیسی مقاله شهر زیست‌محیطی کربن صفر, ردپای بوم‌شناختی, مدل‌سازی ساختاری PLS, IPCC, شهرکرد

نویسندگان مقاله مصطفی محمدی ده چشمه |
دانشیار‌ گروه ‌جغرافیا و ‌برنامه ریزی‌شهری،‌ دانشکده‌ادبیات و علوم انسانی، ‌دانشگاه‌ شهید ‌چمران ‌اهواز،‌ اهواز، ایران.

سهراب قائدی |
استادیار گروه ‌جغرافیا و‌برنامه ریزی‌شهری، دانشکده‌ادبیات و علوم انسانی، دانشگاه‌ شهید ‌چمران ‌اهواز،‌ اهواز، ایران.

ندا پیوند |
‌کارشناسی‌ارشد ‌گروه‌ جغرافیا و ‌برنامه ریزی‌شهری، دانشکده‌ادبیات و علوم انسانی، دانشگاه‌ شهید ‌چمران ‌اهواز،‌ اهواز، ایران.


نشانی اینترنتی https://gep.ui.ac.ir/article_25063_7370a7d28338d4207d4699f2d8096a7b.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات