جغرافیا و برنامه ریزی محیطی، جلد ۳۲، شماره ۴، صفحات ۱۰۷-۱۳۴

عنوان فارسی پهنه‌بندی مناطق متأثر از ریزگردها در استان کرمانشاه
چکیده فارسی مقاله روند رو به افزایش پدیده ریزگردها در سال‌های اخیر، توجه جوامع جهانی را به خود جلب کرده است. کاهش خسارت احتمالی ریزگردها در آینده مستلزم شناسایی و پهنه‌بندی دقیق مناطقی است که از ریزگردها تأثیر می‌پذیرند. برای انجام این پژوهش، آمار روزانه گرد و غبار با کد 06 مربوط به 14 ایستگاه هواشناسی سراسر استان کرمانشاه طی دوره آماری 1381 تا 1397 از اداره کل هواشناسی استان کرمانشاه دریافت و به‌صورت روزانه، ماهیانه و سالیانه در محیط نرم‌افزارهای Excel و SPSS تحلیل و محاسبه شد؛ سپس نقشه پهنه‌بندی و لایه‌های اطلاعاتی آن برای کل دوره در محیط نرم‌افزاری Arc GIS ترسیم شد. نتایج به‌دست‌آمده نشان داد شهرستان‌های نوار غربی استان کرمانشاه یعنی سرپل ذهاب، قصر شیرین، پاوه، گیلان‌غرب و ثلاث باباجانی به ترتیب با مجموع 1333، 1301، 1103، 1047 و 1001 روز در سال، بیشترین فراوانی گرد و غبار و سنقر و هرسین با 544 و 532 روز در سال، کمترین فراوانی گرد و غبار را دارند. درمجموع و طی بازه 16ساله، 12163 روز همراه با گرد و غبار در شهرستان‌های استان کرمانشاه مشاهده شده و هر شهرستان به‌طور میانگین دست‌کم 2/48 روز در سال با گرد و غبار مواجه بوده است. پهنه‌بندی گرد و غبار برای ایستگاههای مطالعه‌شده نشان داد ازنظر فراوانی سالیانه طوفان‌های گرد و غبار معلق در هوا، این ایستگاهها در سه دسته خیلی شدید، شدید و متوسط قرار می‌گیرند. در دسته خیلی شدید شهرستان‌های سرپل ذهاب، قصر شیرین، پاوه، گیلان‌غرب و ثلاث باباجانی قرار می‌گیرند. در دسته شدید شهرستان‌های کرمانشاه، جوانرود، روانسر، دالاهو و اسلام‌آباد قرار دارند و در دسته متوسط شهرستان‌های صحنه، کنگاور، سنقر و هرسین قرار می‌گیرند. باید این واقعیت را بپذیریم که ما همچنان پدیده گرد و غبار را تجربه خواهیم کرد و فقط زمانی این پدیده کاهش خواهد یافت که زمین دوباره رطوبت مناسب جذب کند و بارندگی مؤثری در بخش‌های غربی خاورمیانه ازجمله عراق، عربستان، کویت و ایران روی دهد و هورالعظیم دوباره همانند گذشته پرآب و کار کاشتن درختان (کمربند سبز) هرچه سریع‌تر آغاز شود؛ زیرا هر هکتار جنگل تا 68 تن گرد و خاک را جذب می‌کند؛ از سویی وجود جنگل‌های دست‌کاشت در مناطق بیابانی نیز موجب تثبیت شن‌های روان، ایجاد تعادل اکولوژیکی و حفاظت از منابع آب و خاک مناطق زیر پوشش می‌شود.
کلیدواژه‌های فارسی مقاله ریزگرد، گرد و غبار، پهنه‌بندی، بلایای اقلیمی و کرمانشاه،

عنوان انگلیسی Zoning of Dust-Affected Areas in Kermanshah Province
چکیده انگلیسی مقاله  Extended AbstractIntroductionThe crisis of climate change, and especially dust phenomenon, has become more apparent in the last decade as it now involves all aspects of the society, especially farmers and villagers. The growing number of natural disasters has sounded the alarm for the agricultural community in Kermanshah province. In this province, most people are working through agriculture and the slightest change in the climate can have an immediate impact on the agricultural sector, thus leading to bigger problems such as immigration, and the country's lack of independence in meeting food needs and resolving social, economic, cultural, or even political issues. Accordingly, dust management and planning for it can be effective when we identify and classify the areas affected by dust based on the intensity and concentration of fine dust particles.Dust phenomenon has imposed a lot of costs on the agricultural, economic, and health products of people living along the Zagros Mountain Range in recent years. Zoning of the affected areas can be a tool for planners to deal with priorities, determine an optimal land use, and provide warning systems and protection, etc. in arid and semi-arid regions, especially in the involved cities. Although the issue of dust is an almost uncontrollable phenomenon, it is at least possible to know the time table and circulatory patterns, based on which infiltration of particulate matters from the regions occurs. The related infrastructure is ready to deal with this phenomenon. Therefore, it is necessary to identify the areas that suffer from the most damage caused by fine dust and effectively contribute to the reduction of its destructive outcomes. MethodologyIn this research, quantitative, applied, and descriptive-analytical approaches were taken in terms of paradigm, objective, and data collection, respectively. To conduct this study, 14 synoptic, complementary synoptic, and meteorological stations working through the complete and longest statistical period were selected during a common statistical period of 16 years (2002-2018). At the meteorological stations, two-digit codes were utilized to report on the atmospheric phenomena like precipitation type, including precipitation with thunderstorms and snowstorms, as well as the amounts of dust or sand. These codes started from 00 and continued up to 99, each of which represented an atmospheric phenomenon. Code 06 was for dust phenomenon. The frequency of this code was different from those of the other codes when filtered in Excel software, after which its annual frequency reported in each of the selected stations during the 16-year statistical period was calculated by SPSS software. In the final stage, zoning patterns were formed and the information layers were analyzed in the ArcGIS software environment. Results and discussionBased on the annual frequency of airborne dust storms, dust pollution in the cities of Kermanshah province fell into 3 categories: very severe, severe, and moderate. The cities of Sarpol-e-zahab, Qasr-e-Shirin, Paveh, Gilan-e-gharb, and Thalas-e-Babajani fell in the category of very severe frequency; Kermanshah, Javanroud, Ravansar, Dalahou, and Islamabad cities had a severe frequency; and Sahneh, Kangavar, Songor, and Harsin cities were categorized as having a moderate frequency. There was almost a big difference between the first category and the second and third one in terms of frequency of dust days. The reason was that the first group of stations were located in the vicinity of Iraq, Saudi Arabia, Syria, Jordan, and Kuwait, which were the sources of dust spread over the western regions of Kermanshah province. Also, the drought and lack of vegetation in these regions leading to the separation of soil particles were known as the aggravating factors contributing to the occurrence of more dust days in this group. However, the stations in the second and third districts had fewer dusty days due to being far from the mentioned dust centers. ConclusionThe agricultural sector is one of the most important economic sectors in all developing countries, which, in addition to creating jobs for people, is responsible for producing the food needed by the members of the society. Agricultural activities can lead to independence in other aspects. Apart from all the benefits of agricultural activities for a country, it is important to consider what happens if a factor has a negative impact on them. Unfortunately, we have witnessed dust occurrence in the country, especially in the western and southwestern regions in the last decade. The effects of dust on agriculture can be a threat to the health of producers and consumers, as well as the environment and natural resources. On the other hand, most people make a living from agriculture and animal husbandry in Iran, particularly in the study area. Therefore, long-term dust would destroy people’s productive resources in the study regions and thus reduce food production and independence. In this research, we sought to conduct zoning of the areas affected by dust phenomenon in Kermanshah Province. This way, we could identify areas undergoing the most damage from dust. Eradicating the causes and factors leading to severe damages triggered by dust phenomenon can be the basis for policy-makers and developers of appropriate programs to prevent natural and priority crises and deal with them in strategic decision-making and planning. The results revealed that the cities in the western and eastern regions of Kermanshah province had the highest and lowest frequencies of dust occurrence during the last 16 years, respectively. Keywords: fine dust particles, dust zoning, climate disaster, Kermanshah References:- Achudume, A.C., Oladipo, B.O., (2009). Effects of Dust Storm on Health in the Nigerian, Environment Biology and Medicine, Vol. 1 (4).- Al- Faraji, Fadahi, (2001). Ating Desertification in Iraq, Desestification Control Bulletin.- Brown, P.R., Nelson, R., Jacobs, B., Kokic, P., Tracey, J., Ahmed, M., DeVoil, P., (2010). Enabling natural resource managers to self-assess their adaptive capacity, Agricultural Systems, 103 (8), 562-568.- Chen, Y.S., Sheen, P.C., Chen, E.R., Liu, Y.K., Wu, T.N., Yang, C.Y., (2004). Effects of Asian dust storm events on daily mortality in Taipeh, Taiwan, Environment Research, 95, 151-155.- Christopher, S.A., Jones, Th.A., (2010). Satellite and Surface-based Remote Sensing of Saharan Dust Aerosols, Remote Sens, Environ, 114 (5).- Darwish, M., (2012). The Dust; made it from a geographical reality to a human disaster, Malayer: First conference on dry areas.- Delpisheh, A., (2010). Dust Phenomenon and Health, Clinical Epidemiology, Ilam University of Medical Sciences.- Ebadat, V., (2010). Dust Explosion Hazard Assessment, J. Loss Prevent. Proc. 23 (6).- Englestadler, S., (2001). Dust Storm Frequehcies and their Relationship to Land Surface Conditions, Fridrich-Schiller University, Jena- Englestadter, S., Tegen, I., Washington, R., (2006). North African Dust Emissions and Transport, Earth-Science Reviews, 79 (1-2).- Fattahi, E., Noohi, k., Shiravand, H., (2012). Study of Synoptical Patternns of Dust Storms at South West Region of Iran, Desert 17, 49-55, Online at http://jdesert.ut.ac.ir.- Goudie, A.S., Middleton, N.J., (2006). Desert Dust in the Global System, Springer, Germany.- Griffin, D.W., (2007). Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health, Clinical Microbiology Reviews, 20 (3), 459-477.- Griffin, D.W., Garrison, V.H., Herman, J.R., Shinn, E.A., (2003). African desert dust in the Caribbean atmosphere: microbiology and public health, Aerobiologia, 17: 203-213.- Hua, N.P., Kobayashi, F., Iwasaka, Y., Shi, G.Y., Naganuma, T., (2007). Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan, Aerobiologia, 23 (4), 291-8.- Kaskaoutis, D.G., Kambezidis, H.D., Nastos, P.T., Kosmopoulos, P.G., (2008). Study on an Intense Dust Storm over Greece, Atmos, Environ, 42 (29).- Kellogg, C.A., Griffin, D.W., Garrison, V. H., Peak, H. K., Royall, N., Smith, R.M., Shinn, E.A., (2004). Characterization of aerosolized bacteria and fungi from desert dust events in Mali: West Africa, Aerobiologia, 20, 99-110.- Krueger, B.J., Grassian, V.H., Cowin, J.P., Laskin, A., (2004). Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy, Atmospheric Environment, 38 (36), 6253- 61.- Lin, G., (2002). Dust Bowl in the 1930 and Sand Storm in 1999 in the USA, Global Alarm: Dust and Sand Storms from the Word Drylands, United Nations.- Meng, Z., Zhang, Q., (2007). Damage effects of dust storm PM2.5 on DNA in alveolar macrophages and lung cells of rats, Food and Chemical Toxicology, 45, 1368-1374.- Mckwnzie, E., Prasad, B., Kaloumaria, A., (2005). Economic Impact of Natural Disaster on Development in the Pacific. Economic Assessment Tools, University of the South Pacific (USP), Vol. 2.- Narayan, P.K., (2003). Macroeconomic Impact of Natural Disasters on a Small Island Economic, Evidence from a CGE Model, Applied Economics Letters, 10, 721-723.- Noy, I., (2006). The Macroeconomic Costs of Natural Disaster, Preliminary Text, Department of Economic, University of Hawaii.- Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., Gill, T.E., (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer absorbing aerosol product, Rev. Geophys, 40, 2-31.- Stefanski, R., Sivakumar, M.V.K., (2006). Impacts of Sand and Dust Storms on Agriculture and Potential Agricultural Applications of a SDSWS, WMO/GEO ExpertMeetingonan International Sandand Dust Storm Warning System IOP Publishing, IOP Conf. Series: Earthand Environmental Science, 012016doi:10.1088/1755-1307/7/1/012016.- Washington, R., Todd, M., Middleton, N.J., Goudie, A.S., (2003). Dust Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations, Ann. Assoc. Am. Geogr, 93 (2).- Xuan, J., Sokolik, I.N., Hao, J., Guo, F., Mao, H., Yang, G., (2004). Identification and Characterization of Sources of Atmospheric Mineral Dust in East Asia, Atmospheric Environment, 38 (36).- Yang, H., Ye, B., Ji, X., (2003). Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period, Atmospheric Environment, 37 (4), 449-510.- Zhao, L., Zhao, S., (2006). Diagnosis and Simulation of Rapidly Developing Cyclone Related to a Severe Dust Storm in East Asia, Global Planet, Change, 52. 
کلیدواژه‌های انگلیسی مقاله ریزگرد, گرد و غبار, پهنه‌بندی, بلایای اقلیمی و کرمانشاه

نویسندگان مقاله محمد رضا همزه ای |
استادیار گروه ترویج و آموزش دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

محمد حسین بابایی |
دانشجوی دکتری گروه ترویج و آموزش دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

عبدالحمید پاپ زن |
دانشیار گروه ترویج و آموزش دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران


نشانی اینترنتی https://gep.ui.ac.ir/article_25853_443f683ab2d4ad97abec0233cc5efaf0.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات