این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Computational and Applied Research in Mechanical Engineering - JCARME، جلد ۱۱، شماره ۲، صفحات ۴۰۹-۴۲۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Braking intensity recognition with optimal K-means clustering algorithm
چکیده انگلیسی مقاله Recognizing a driver’s braking intensity plays a pivotal role in developing modern driver assistance and energy management systems. Therefore, it is especially important to autonomous and electric vehicles. This paper aims at developing a strategy for recognizing a driver’s braking intensity based on the pressure produced in the brake master cylinder. In this regard, a model-based, synthetic data generation concept is used to generate the training dataset. This technique involves two closed-loop controlled models: an upper-level longitudinal vehicle dynamics model and a lower-level brake hydraulic dynamic model. The adaptive particularly tunable fuzzy particle swarm optimization algorithm is recruited to solve the optimal K-means clustering. By doing so, the best number of clusters and positions of the centroids can be determined. The obtained results reveal that the brake pressure data for a vehicle traveling the new European driving cycle can be best partitioned into two clusters. A driver’s braking intensity may, therefore, be clustered as moderate or intensive. With the ability to automatically recognize a driver’s pedal feel, the system developed in this research could be implemented in intelligent driver assistance systems as well as in electric vehicles equipped with intelligent, electromechanical brake boosters.
کلیدواژه‌های انگلیسی مقاله Vehicle safety systems, Clustering, K-means Algorithm, Hydraulic brake system

نویسندگان مقاله Ali Mirmohammad Sadeghi |
School of Automotive Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

Abdollah Amirkhani |
School of Automotive Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

Behrooz Mashadi |
School of Automotive Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran


نشانی اینترنتی https://jcarme.sru.ac.ir/article_1577_afa50a3a5cb31dd615cb697413a17f31.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات