این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۲، شماره Special Issue، صفحات ۱۵۸۵-۱۵۹۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Inception based GAN for ECG arrhythmia classification
چکیده انگلیسی مقاله Cardiovascular diseases are the world's principal reason for death, accounting it about 17.9 million people per year, as reported by World Health Organization(WHO). Arrhythmia is often a heart disease that is interpreted by a variation in the linearity of the heartbeat. The goal of this study would be to develop a new deep learning technique to accurately interpret arrhythmia utilizing a one-second segment. This paper introduces a novel method for automatic GAN-based arrhythmia classification. The input ECG signal is derived from the fusion of well known Physionet dataset from MIT-BIH and some Hospital ECG databases. The ECG segment over time is used to detect 15 different classes of arrhythmias. The GAN network uses an attention-based generator to learn local essential features and to maintain data integrity for both time and frequency domains. Among these, the highest accuracy obtained is 98%. It can be inferred from the results that the proposed approach is smart enough to make meaningful predictions and produces excellent performance on the related metrics.
کلیدواژه‌های انگلیسی مقاله Electrocardiogram, ECG classification, Inception, GAN, Generative adversarial network

نویسندگان مقاله Neerajkumar S. Sathawane |
GHRCOE, Nagpur, India

Ulhaskumar Gokhale |
GHRCOE, Nagpur, India

Dinesh Padole |
GHRCOE, Nagpur, India

Sanjay Wankhede |
GHRCOE, Nagpur, India


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5831_05c3ae995a63188ee52138a99d2aed4f.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات