این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۲، شماره Special Issue، صفحات ۲۹-۳۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Ensemble deep learning for aspect-based sentiment analysis
چکیده انگلیسی مقاله
Sentiment analysis is a subfield of Natural Language Processing (NLP) which tries to process a text to extract opinions or attitudes towards topics or entities. Recently, the use of deep learning methods for sentiment analysis has received noticeable attention from researchers. Generally, different deep learning methods have shown superb performance in sentiment analysis problem. However, deep learning models are different in nature and have different strengths and limitations. For example, convolutional neural networks are useful for extracting local structures from data, while recurrent models are able to learn order dependence in sequential data. In order to combine the advantages of different deep models, in this paper we have proposed a novel approach for aspect-based sentiment analysis which utilizes deep ensemble learning. In the proposed method, we first build four deep learning models, namely CNN, LSTM, BiLSTM and GRU. Then the outputs of these models are combined using stacking ensemble approach where we have used logistic regression as meta-learner. The results of applying the proposed method on the real datasets show that our method has increased the accuracy of aspect-based prediction by 5% to 20% compared to the basic deep learning methods.
کلیدواژههای انگلیسی مقاله
Deep learning, Ensemble Learning, Natural Language Processing, Opinion Mining, Sentiment Analysis
نویسندگان مقاله
Azadeh Mohammadi |
Assistant Professor, Computer Department, University of Isfahan, Isfahan, Iran.
Anis Shaverizade |
Graduate student, IT and Computer Department, Sepahan Institute of Higher Education, Isfahan, Iran.
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_4769_61f5d2411f6859f6e6df9330ea5d6802.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات