این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۲، شماره ۲، صفحات ۱۷۳۵-۱۷۴۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Entire functions and some of their growth properties on the basis of generalized order (α,β)
چکیده انگلیسی مقاله For any two entire functions $f$, $g$ defined on finite complex plane $mathbb{C}$, the ratios $frac{M_{fcirc g}(r)}{M_{f}(r)}$ and $frac{M_{fcirc g}(r)}{M_{g}(r)}$ as $rrightarrow infty $ are called the growth of composite entire function $fcirc g$ with respect to $f$ and $g$ respectively in terms of their maximum moduli. Several authors have worked about growth properties of functions in different directions. In this paper, we have discussed about the comparative growth properties of $fcirc g$, $f$ and $g,$ and derived some results relating to the generalized order $(alpha ,beta )$ after revised the original definition introduced by Sheremeta, where $alpha ,$ $beta $ are slowly increasing continuous functions defined on $(-infty,+infty )$. Under different conditions, we have found the limiting values of the ratios formed from the left and right factors on the basis of their generalized order $(alpha ,beta )$ and generalized lower order $(alpha,beta ),$ and also established some inequalities in this regard.
کلیدواژه‌های انگلیسی مقاله Entire function, Growth, composition, generalized order $(alpha, beta ) $, generalized lower order $(alpha,beta )$

نویسندگان مقاله Tanmay Biswas |
Rajbari, Rabindrapally, R. N. Tagore Road P.O. Krishnagar, Dist-Nadia, PIN- 741101, West Bengal, India

Chinmay Biswas |
Department of Mathematics,Nabadwip Vidyasagar College, Nabadwip, Dist.- Nadia, PIN-741302, West Bengal, India

Biswajit Saha |
Department of Mathematics, Government General Degree College Muragachha, Nakashipara, Dist.- Nadia, PIN-741154,West Bengal, India


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5313_a269705c98c98c6c5301ed8b92b7f7ff.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات