این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۲، شماره ۲، صفحات ۱۱۴۱-۱۱۵۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Face recognition via weighted non-negative sparse representation
چکیده انگلیسی مقاله Face recognition is one of the most important tools of identification in biometrics. Face recognition has attracted great attention in the last decades and numerous algorithms have been proposed. Different researches have shown that face recognition with Sparse Representation based Classification (SRC) has great classification performance. In some applications such as face recognition, it is appropriate to limit the search space of sparse solver because of local minima problem. In this paper, we apply this limitation via two methods. In the first, we apply the nonnegative constraint of sparse coefficients. As finding the sparse representation is a problem with very local minima, at first we use a simple classifier such as nearest subspace and then add the obtained information of this classifier to the sparse representation problem with some weights. Based on this view, we propose Weighted Non-negative Sparse Representation WNNSR for the face recognition problem. A quick and effective way to identify faces based on the sparse representation (SR) is smoothed $L_0$-norm $(SL_0)$ approach. In this paper, we solve the WNNSR problem based on the $SL_0$ idea. This approach is called Weighted Non-Negative Smoothed $L_0$ norm $(WNNSL_0)$. The simulation results on the Extended Yale B database demonstrate that the proposed method has high accuracy in face recognition better than the ultramodern sparse solvers approach.
کلیدواژه‌های انگلیسی مقاله Face recognition, face subspace, sparse decomposition, smoothed $L_0$-norm, weighted $L_0$-norm, non-negative smoothed $L_0$ norm

نویسندگان مقاله Hoda Khosravi |
Department of Software Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Aboozar Ghaffari |
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Javad Vahidi |
Department of Mathematics, Iran University of Science and Technology, Tehran, Iran


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_5187_922a5007b6b21e37bbe932bafc317cd0.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات