این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۲، شماره ۲، صفحات ۱۳۵-۱۴۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Predicting drug-target interaction based on bilateral local models using a decision tree-based hybrid support vector machine
چکیده انگلیسی مقاله
Identifying the interaction between the drug and the target proteins plays a very important role in the drug discovery process. Because prediction experiments of this process are time consuming, costly and tedious, Computational prediction can be a good way to reduce the search space to examine the interaction between drug and target instead of using costly experiments. In this paper, a new solution based on known drug-target interactions based on bilateral local models is introduced. In this method, a hybrid support vector machine based on the decision tree is used to decide and optimize the two-class classification. Using this machine to manage data related to this application has performed well. The proposed method on four criteria datasets including enzymes (Es), ion channels (IC), G protein coupled receptors (GPCRs) and nuclear receptors (NRs), based on AUC, AUPR, ROC and running time has been evaluated. The results show an improvement in the performance of the proposed method.
کلیدواژههای انگلیسی مقاله
Drug-target interaction, bilateral local model, Decision Tree, hybrid SVM
نویسندگان مقاله
Ali Ghanbari Sorkhi |
Faculty of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
Majid Iranpour Mobarakeh |
Department of Computer Engineering and IT, Payam Noor University, Tehran, Iran
Seyed Mohammad Reza Hashemi |
Young Researchers and Elite Club Qazvin Branch Islamic Azad University, Qazvin, Iran
Maryam Faridpour |
Department of Electrical and Computer Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_5023_ee31e29ad07264aafe7c88ca8336f636.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات