این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 1 آبان 1404
International Journal of Mining and Geo-Engineering
، جلد ۵۶، شماره ۴، صفحات ۳۸۳-۳۹۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Reservoir characterization and porosity classification using probabilistic neural network (PNN) based on single and multi-smoothing parameters
چکیده انگلیسی مقاله
A probabilistic neural network (PNN) is a feed-forward neural network using a smoothing parameter. We used the PNN algorithm based on single and multi-smoothing parameters for multi-dimensional data classification. Using multi-smoothing parameters, we implemented an improved probabilistic neural network (PNN) to estimate the porosity distribution of a gas reservoir in the North Sea. Comparing the results of implementing smoothing parameters obtained from model-based optimization and particle swarm optimization (PSO) indicated the efficiency of PNN in characterizing the gas. Also, results showed that while the PSO algorithm was able to specify smoothing parameters with more precision, about 9%, it was very time-consuming. Finally, multi PNN based on PSO was applied to estimate the porosity distribution of the F3 reservoir. The results validated the main fracture or gas chimney of the F3 reservoir with higher porosity. Also, gas-bearing layers were highlighted by energy and similarity attributes.
کلیدواژههای انگلیسی مقاله
probabilistic neural network,Smoothing Parameter,model-based optimization,Particle Swarm Optimization
نویسندگان مقاله
Masood Lashkari Ahangarani |
Mining Engineering Department, Arak University of Technology, Arak, Iran
Saeed Mojeddifar |
Mining Engineering Department, Arak University of Technology, Arak, Iran
Mohsen Hemmati Chegeni |
Mining Engineering Department, Arak University of Technology, Arak, Iran
نشانی اینترنتی
https://ijmge.ut.ac.ir/article_87471_c8b621de36c8096a01d1bdf09eb40fa3.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات