این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
انجمن مهندسی صوتیات ایران، جلد ۱۰، شماره ۱، صفحات ۱-۱۲

عنوان فارسی طبقه‌بندی خودکار صداهای طبیعی و غیرطبیعی قلبی با ترکیب ویژگی‌های مبتنی بر تبدیل موجک و ضرایب کپسترال استخراج‌شده از علامت‌های پی‌سی‌جی (مقاله پژوهشی)
چکیده فارسی مقاله صداهای قلبی در اثر فعالیت‌های مکانیکی قلب ایجاد می‌شوند و اطلاعات مفیدی در رابطه با عملکرد دریچه‌های قلبی فراهم می‌کنند. به‌دلیل ماهیت گذرا و غیرایستان علامت صدای قلب و محدودیت شنوایی گوش انسان، یافتن نشانه‌هایی براساس صداهای شنیده‌شده از گوشی پزشکی برای طبقه‌بندی علامت‌های‌ صدای قلب امری دشوار است. بنابراین، تجزیه و تحلیل علامت صدای قلب به‌منظور فراهم نمودن یک الگوریتم خودکار برای تشخیص اولیه بیماری قلبی کاری بسیار ارزشمند است. در این مقاله یک روش خودکار برای طبقه‌بندی صداهای قلبی با استفاده از علامت‌های ضبط‌شده از دستگاه فونوکاردیوگرام ارائه شده است. در روش پیشنهادی ضرایب کپسترال بسامد مِل (اِم‌اِف‌سی‌سی) به همراه ویژگی‌های مبتنی بر تبدیل موجک از علامت صدای قلبی استخراج می‌شوند. در مرحله‌ی بعدی، بهترین مجموعه از ویژگی‌ها با استفاده از الگوریتم جستجوی ترتیبی روبه‌جلو (اِس‌اِف‌اِ‌ف‌اِس) انتخاب می‌گردند. سرانجام، مجموعه ویژگی‌های انتخاب‌شده به ورودی طبقه‌بند ماشین‌های بردار پشتیبان (اِس‌وی‌اِم) اعمال شده، تا صداهای قلبی طبقه‌بندی شوند. عملکرد روش پیشنهادی با استفاده از مجموعه داده عمومی که توسط برگزارکنندگان چالش صداهای قلب (چالش 2016 در تارگاه فیزیونت) ارائه شده، ارزیابی شد. روش پیشنهادی میانگین اِم‌اِی‌سی‌سی برابر با 88/15 درصد، میانگین حساسیت 92/74 درصد و میانگین اختصاصیت 83/56 درصد را در طبقه‌بندی صداهای قلبی فراهم کرد. نتایج نشان می‌دهند که روش پیشنهادی دارای عملکرد بهتری نسبت به بهترین روش‌های موجود است و ابزاری مناسب در تجزیه و تحلیل صداهای قلبی است.
کلیدواژه‌های فارسی مقاله علامت صدای قلبی، ضرایب اِم‌اِف‌سی‌سی، تبدیل موجک، ویژگی‌های آنتروپی، طبقه‌بند اِس‌وی‌اِم.

عنوان انگلیسی Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
چکیده انگلیسی مقاله Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for primary diagnosis of heart disease by analytic use of heart sound signals is very valuable. In this paper, an automated method for classifying cardiac sounds using signals recorded from a phonocardiogram is presented. In the proposed method, the Mel frequency cepstral coefficients along with wavelet-based features are extracted from the heart sound signals. In the next step, the most informative features are selected using the Sequential Forward Floating Search (SFFS) algorithm. Finally, the selected feature set is fed into the classifier, support vector machines, to classify heart sounds. The performance of the proposed method was evaluated using a public dataset presented by the organizers of the the PhysioNet/CinC Challenge 2016. The proposed method provided an average MAcc of 88.15%, an average sensitivity of 92.74% and an average specificity of 83.56% in the classification of cardiac sounds. The results show that the proposed method has better performance than the best available methods and is a suitable tool in the analysis of heart sounds.
کلیدواژه‌های انگلیسی مقاله Heart sound signal, MFCC coefficients, Wavelet transform, Entropy features, SVM classifier.

نویسندگان مقاله اصغر زارعی | A. Zarei


امیر قاسمی | A. Ghasemi


مجتبی غلامی پور | M. Gholamipour



نشانی اینترنتی http://joasi.ir/browse.php?a_code=A-10-1112-2&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده پردازش علائم صوتی
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات