این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 28 مهر 1404
Journal of Medical Signals and Sensors
، جلد ۱۲، شماره ۲، صفحات ۱۲۲-۱۲۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using classification and K-means methods to predict breast cancer recurrence in gene expression data
چکیده انگلیسی مقاله
Background: Breast cancer is a type of cancer that starts in the breast tissue and affects about 10% of women at different stages of their lives. In this study, we applied a new method to predict recurrence in biological networks made from gene expression data. Method: The method includes the steps such as data collection, clustering, determining differentiating genes, and classification. The eight techniques consist of random forest, support vector machine and neural network, randomforest + k-means, hidden markov model, joint mutual information, neural network + k-means and suportvector machine + k-menas were implemented on 12172 genes and 200 samples. Results: Thirty genes were considered as differentiating genes which used for the classification. The results showed that random forest + k-means get better performance than other techniques. The two techniques including neural network + k-means and random forest + k-means performed better than other techniques in identifying high risk cases. Conclusion: Thirty of 12,172 genes are considered for classification that the use of clustering has improved the classification techniques performance.
کلیدواژههای انگلیسی مقاله
Classification, gene, K-means
نویسندگان مقاله
| Mohammadreza Sehhati
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| Mohammad Amin Tabatabaiefar
Department of Hematology-Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| Ali Haji Gholami
Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| Mohammad Sattari
نشانی اینترنتی
http://jmss.mui.ac.ir/index.php/jmss/article/view/613
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات