این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Medical Signals and Sensors، جلد ۱۰، شماره ۴، صفحات ۲۱۹-۲۲۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Enhancing Obstructive Apnea Disease Detection Using Dual-Tree Complex Wavelet Transform-Based Features and the Hybrid “K-Means, Recursive Least-Squares” Learning for the Radial Basis Function Network
چکیده انگلیسی مقاله Background: The obstructive sleep apnea (OSA) detection has become a hot research topic because of the high risk of this disease. Aims and Objectives: In this paper, we tested some powerful and low computational signal processing techniques for this task and compared their results with the recent achievements in OSA detection. Methods: The Dual-tree complex wavelet transform (DTCWT) is used in this paper to extract feature coefficients. From these coefficients, eight non-linear features are extracted and then reduced by the Multi-cluster feature selection (MCFS) algorithm. The remaining features are applied to the hybrid “K-means, RLS” RBF network which is a low computational rival for the Support vector machine (SVM) networks family. Results: The results showed suitable OSA detection percentage near 96% with a reduced complexity of nearly one third of the previously presented SVM based methods.
کلیدواژه‌های انگلیسی مقاله Classification, feature reduction, hybrid K-means recursive least-squares, multi-cluster feature selection, obstructive sleep apnea, single-lead electrocardiogram

نویسندگان مقاله | Javad Ostadieh
Departments of Electrical Engineering and 1Electrical and Computer Engineering, Urmia University, Urmia, Iran


| Mehdi Chehel Amirani
Departments of Electrical Engineering and 1Electrical and Computer Engineering, Urmia University, Urmia, Iran


| Morteza Valizadeh



نشانی اینترنتی http://jmss.mui.ac.ir/index.php/jmss/article/view/542
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Articles
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات