این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 25 مهر 1404
Journal of Medical Signals and Sensors
، جلد ۱۰، شماره ۴، صفحات ۲۱۹-۲۲۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Enhancing Obstructive Apnea Disease Detection Using Dual-Tree Complex Wavelet Transform-Based Features and the Hybrid “K-Means, Recursive Least-Squares” Learning for the Radial Basis Function Network
چکیده انگلیسی مقاله
Background: The obstructive sleep apnea (OSA) detection has become a hot research topic because of the high risk of this disease. Aims and Objectives: In this paper, we tested some powerful and low computational signal processing techniques for this task and compared their results with the recent achievements in OSA detection. Methods: The Dual-tree complex wavelet transform (DTCWT) is used in this paper to extract feature coefficients. From these coefficients, eight non-linear features are extracted and then reduced by the Multi-cluster feature selection (MCFS) algorithm. The remaining features are applied to the hybrid “K-means, RLS” RBF network which is a low computational rival for the Support vector machine (SVM) networks family. Results: The results showed suitable OSA detection percentage near 96% with a reduced complexity of nearly one third of the previously presented SVM based methods.
کلیدواژههای انگلیسی مقاله
Classification, feature reduction, hybrid K-means recursive least-squares, multi-cluster feature selection, obstructive sleep apnea, single-lead electrocardiogram
نویسندگان مقاله
| Javad Ostadieh
Departments of Electrical Engineering and 1Electrical and Computer Engineering, Urmia University, Urmia, Iran
| Mehdi Chehel Amirani
Departments of Electrical Engineering and 1Electrical and Computer Engineering, Urmia University, Urmia, Iran
| Morteza Valizadeh
نشانی اینترنتی
http://jmss.mui.ac.ir/index.php/jmss/article/view/542
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات