این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پیاورد سلامت، جلد ۱۵، شماره ۴، صفحات ۳۴۰-۳۵۲

عنوان فارسی تشخیص ابتلا به سرطان پستان با بهره‌گیری از یادگیری ماشین
چکیده فارسی مقاله زمینه و هدف: سرطان و به‌طور جزیی سرطان پستان در زمره بیماری‌هایی به‌شمار می‌روند که در ایران پس از بیماری‌های قلبی بیش‌ترین آمار مرگ ومیر را به خود اختصاص داده است. پیش‌بینی صحیح سرطان پستان دارای اهمیت است و وجود علایم و ویژگی‌های مختلف این بیماری، تشخیص را برای پزشکان دشوار می‌کند. هدف این پژوهش، شناسایی عوامل موثر بر سرطان پستان و تشخیص احتمال ابتلا به سرطان پستان است. روش بررسی: در مطالعه‌ی حاضر، ابتدا به روش تحلیل محتوا و مطالعات کتابخانه‌ای، عوامل تاثیرگذار در ابتلا به سرطان پستان شناسایی شده سپس با همراهی تیم خبرگان مشتمل بر پزشکان متخصص و یا دارای فوق‌تخصص سرطان‌شناسی و جراحی پستان با کمک روش دلفی، تعدیل گردیده و 26 عامل نهایی که به‌صورت عددی صحیح و رشته‌ای بودند براساس شرایط بومی و اقلیمی تایید شدند. در ادامه و با توجه به عوامل نهایی و براساس پرونده پزشکی 5208 بیمار در مرکز تحقیقات سرطان دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید‌بهشتی به منظور تشخیص ابتلا به سرطان از روش‌های درخت تصمیم (Decision Tree)، جنگل تصادفی (Random Forest) و ماشین‌بردار پشتیبان (Support Vector Machine) به‌عنوان روش‌های یادگیری ماشین بهره گرفته شد. یافته‌ها: در گام نخست و با روش تحلیل محتوا، 29 عامل تاثیرگذار در ابتلا به سرطان پستان شناسایی شد. در ادامه و با در نظر گرفتن شرایط بومی و اقلیمی و با استفاده از روش دلفی و با بهره‌گیری از نظرات 18 خبره در طی سه دوره، 26 عامل تعدیل و نهایی شد. در گام نهایی و با استفاده از پرونده پزشکی مراجعه‌کنندگان که در طی 3 سال گردآوری شده و معیارهای استخراج‌شده از سه روش ذکر شده، جنگل تصادفی، بیشترین دقت به میزان 94/75% و صحت 97/26% را در تشخیص ابتلا به سرطان پستان به خود اختصاص داد، که این میزان در قیاس با سایر پژوهش‌های مشابه که از پایگاه‌‌های داده بومی بهره گرفته‌اند، دقت‌های به‌دست آمده بسیار نزدیک به کارهای پیشین بوده و در بعضی موارد نیز دقت بهتری داشته است. نتیجه‌گیری: با استفاده از روش جنگل تصادفی و با بهره‌گیری از عوامل تاثیرگذار بر سرطان پستان، قابلیت تشخیص ابتلا به سرطان با بیشترین دقت فراهم شده است.
کلیدواژه‌های فارسی مقاله سرطان پستان، تحلیل محتوا، روش دلفی، جنگل تصادفی، درخت تصمیم، ماشین‌بردار پشتیبان

عنوان انگلیسی Diagnosing Breast Cancer by Machine Learning
چکیده انگلیسی مقاله Background and Aim: Cancer and in particular Breast cancer are among the diseases that have the highest mortality rate in Iran after heart disease. The accurate prognosis for Breast cancer is important, and the presence of various symptoms and features of this disease makes it difficult for doctors to diagnose. This study aimed to identify the factors affecting Breast cancer, modeling and ultimately diagnosing the risk of Breast cancer. Materials and Methods: In the present study, first, by content analysis and library studies, the effective factors in Breast cancer were identified, then with the help of a team of experts consisting of physicians and subspecialists in Breast oncology and Breast surgery; With the help of the Delphi method, the factors were adjusted and 26 final factors that were numerically correct and string based on local and climatic conditions were approved. Then, according to the final factors and based on the medical records of 5208 patients in the Cancer Research Center of Shahid Beheshti University of medical sciences, to diagnose cancer, Decision Tree, Random Forest, and Support Vector Machine methods were used as machine learning methods. Results: In the first step, by content analysis method, 29 effective factors in Breast cancer were identified. Then, taking into account the indigenous and climatic conditions and using the Delphi method and also using the opinions of 18 Experts during three years, 26 factors were finalized. In the final step, using the medical records of the patients and the results obtained from the three methods mentioned, random forest, had the highest accuracy of 94.75% and precision of 97.26% in diagnosing Breast cancer. It has been noted that, compared to other similar studies, indigenous databases have been exploited, the accuracy obtained has been very close to previous studies, and in many cases much better. Conclusion: Using the random forest method and taking advantage of the factors affecting Breast cancer, the ability to diagnose cancer has been provided with greatest accuracy.  
کلیدواژه‌های انگلیسی مقاله Breast Cancer, Content Analysis, Delphi Method, Random Forest, Decision Tree, Support Vector Machine

نویسندگان مقاله کسری دولت خواهی | Kasra Dolatkhahi
Ph.D. Candidate in Industrial Management Operations Research Orientation, Faculty of Management and Accounting, College of Farabi University of Tehran, Tehran, Iran
دانشجوی دکتری مدیریت صنعتی گرایش تحقیق در عملیات، دانشکده مدیریت و حسابداری، پردیس فارابی دانشگاه تهران، قم، ایران

عادل آذر | Adel Azar
Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
استاد گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

تورج کریمی | Tooraj Karimi
Assistant Professor, Department of Industrial and Technology Management, Faculty of Management and Accounting, College of Farabi University of Tehran, Iran
استادیار گروه مدیریت صنعتی و تکنولوژی، دانشکده مدیریت و حسابداری، پردیس فارابی دانشگاه تهران، قم، ایران

محمد هادیزاده | Mohammad Hadizadeh
Assistant Professor, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
استادیار، مرکز تحقیقات سرطان، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید‌بهشتی، تهران، ایران


نشانی اینترنتی http://payavard.tums.ac.ir/browse.php?a_code=A-10-2270-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده فناوری اطلاعات سلامت
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات