این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
هوش محاسباتی در مهندسی برق، جلد ۱۱، شماره ۳، صفحات ۱-۱۲

عنوان فارسی شناسایی خودکار حالت‌های مختلف بیماری صرع از سیگنال EEG با استفاده از شبکه‌های یادگیری عمیق
چکیده فارسی مقاله استفاده از روشی هوشمند برای تشخیص خودکار مراحل مختلف صرعی در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیه‌وتحلیل داده‌های صرع با بازرسی بصری، یکی از چالش‌های مهم در سال‌های اخیر محسوب می‌شود. یکی از مشکلات شناسایی خودکار مراحل مختلف صرعی، استخراج ویژگی‌های مطلوب است؛ به‌گونه‌ای که این ویژگی‌ها بتوانند بیشترین تمایز را بین مراحل مختلف صرعی ایجاد کنند. فرآیند یافتن ویژگی‌های مناسب، عموماً امری زمان‌بر است. این پژوهش، رویکرد جدیدی را برای شناسایی خودکار مراحل مختلف صرعی ارائه می‌دهد. در این مقاله، یک شبکۀ کانولوشنال عمیق با 8 لایۀ کانولوشن و 2 لایۀ تماماً متصل برای یادگیری ویژگی‌ها به‌صورت سلسله‌مراتبی و شناسایی خودکار مراحل مختلف صرعی با استفاده از سیگنال EEG ارائه می‌شود. نتایج نشان می‌دهند استفاده از یادگیری عمیق در کاربردهایی همچون یادگیری ویژگی به‌صورت سلسله‌مراتبی و شناسایی مراحل مختلف صرعی، درصد موفقیت بالاتری نسبت به سایر روش‌های مشابه دارد. مدل پیشنهادی ارائه‌شده در این مقاله برای طبقه‌بندی 3 حالت مختلف صرعی، مقدار 100% را دربارۀ معیارهای صحت، حساسیت و اختصاصیت فراهم می‌کند.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Automatic Detection of Various Epileptic Seizures from EEG Signal Using Deep Learning Networks
چکیده انگلیسی مقاله Using an intelligent method to automatically detect epileptic seizures in medical applications is one of the most important challenges in recent years to reduce the workload of doctors in the analysis of epilepsy data through visual inspection. One of the problems of automatic detection of various epileptic seizures is the extraction of desirable characteristics, in such a way that these characteristics can make the most distinction between different phases of epilepsy. The process of finding the right features is usually a matter of time. This research presents a new approach for the automatic identification of epileptic episodes. In this paper, a deep convolutional network with eight convolutional layers and two fully-connected layers is provided to learn the characteristics hierarchically and automatically identify epileptic episodes using the EEG signal. The results show that the use of deep learning in applications such as learning characteristics hierarchically and identification of different stages of epilepsy has a higher success rate than other previous methods. The proposed model presented in this paper provides an average of 100% accuracy, sensitivity and specificity for the classification of three different epileptic seizures.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله سبحان شیخی‌وند |
دانشجوی دکتری، دانشکده مهندسی برق و کامپیوتر - دانشگاه تبریز - تبریز - ایران

سعید مشگینی |
گروه مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

زهره موسوی |
دانشجوی دکتری، دانشکده مهندسی مکانیک - دانشگاه تبریز - تبریز - ایران


نشانی اینترنتی http://isee.ui.ac.ir/article_24619_9b99e12622d7d13a21155e5ea123669d.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1306/article-1306-2460108.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات