این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 5 آذر 1404
تحلیل فضایی مخاطرات محیطی
، جلد ۷، شماره ۱، صفحات ۱-۱۴
عنوان فارسی
شناسایی بلادرنگ آتش سوزی جنگل و مراتع با استفاده از داده های NOAA/AVHRR منطقه مورد مطالعه(پناهگاه حیات وحش کیامکی)
چکیده فارسی مقاله
آتش سوزی جنگل در سال های اخیر توجه زیادی به تغییرات اقلیمی و اکوسیستم داشته است. سنجش از دور، یک روش سریع و ارزان برای تشخیص و نظارت بر آتش سوزی جنگل ها در مقیاس وسیع است. هدف از این پژوهش شناسایی آتشسوزی جنگل و مراتع با استفاده از سنجنده NOAA/AVHRR در پناهگاه حیات وحش کیامکی میباشد.جهت انجام تحقیق، ابتدا تاریخ آتشسوزیهای رخ داده از محصولات MODIS استخراج گردید. سپس تصاویر سنجنده مورد نظر براساس تاریخ آتشسوزیهای رخ داده تهیه شد. بعد از انجام پیش پردازش تصاویر، با استفاده از الگوریتمهای توسعه یافته، گیگلیو و IGBP اقدام به شناسایی آتشسوزی گردید. نتایج الگوریتمهای شناسایی آتشسوزی با محصولات MODIS مورد ارزیابی قرار گرفتند. نتایج نشان داد که شناسایی آتشسوزی با استفاده از الگوریتم IGBP نسبت به الگوریتمهای توسعه یافته و گیگلیو بهتر است. بدین صورت که الگوریتم IGBP با تعداد آتشسوزی شناسایی شده برابر با 6 پیکسل از 7 پیکسل آتشسوزی شناسایی شده توسط محصولات MODIS، الگوریتم گیگلیو با تعداد آتشسوزی شناسایی شده برابر با 5 پیکسل از 7 پیکسل آتشسوزی شناسایی شده توسط محصولات MODIS و الگوریتم توسعه یافته تعداد آتشسوزی شناسایی شده برابر با 3 پیکسل از 7 پیکسل آتشسوزی شناسایی شده توسط محصولات MODIS را شناسایی کرد. همچنین الگوریتم IGBP با میزان خطای 14% و با تعداد آتشسوزی شناسایی 86%، الگوریتم گیگلیو با میزان خطای 28% و تعداد آتشسوزی شناسایی شده 72% و الگوریتم توسعه یافته با میزان خطای 57% و تعداد آتشسوزی شناسایی شده 43% را نشان داد.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Real-time detection of wildlife using NOAA/AVHRR data Study area :(Kayamaki Wildlife Refuge)
چکیده انگلیسی مقاله
Forest fire in recent years has paid great attention to climate change and ecosystems. Remote sensing is a quick and inexpensive way to detect and monitor forest fires on a large scale. The purpose of this study was to identify forest and rangeland fire hazards using NOAA / AVHRR in Kayamaki Wildlife Refuge. For the purpose of this study, the history of the fire-burns occurred in MODIS products. Then, the sensor images were prepared based on the date of fire burning. After preprocessing the images, Giglio and IGBP developed algorithms that detected fire. The results of fire detection detection algorithms were evaluated with MODIS products. The results showed that fire detection using the IGBP algorithm is better than the developed algorithms and Giglia. In this way, the IGBP algorithm with the detected fire number of 6 pixels from the 7-pixel fire detection detected by the MODIS product, the Giglio algorithm with the detected fire number is 5 pixels from the 7-pixel fire detection detected by The MODIS and extended algorithm detected the detected fire detected firefight number of 3 pixels from the 7 pixels of fire detection detected by MODIS products. Also IGBP algorithm with error rate of 14% and with fire detection number of 86%, Giglio algorithm with error rate of 28% and number of fire detected 72%, and developed algorithm with 57% error rate and detected fire number 43%.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
فیروز آقازاده | firuz aghazadeh
Tabriz University
دانشگاه تبریز
هاشم رستم زاده | hashem rostamzadeh
Tabriz University
دانشگاه تبریز
خلیل ولیزاده کامران | khalil valizadeh kamran
Tabriz University
دانشگاه تبریز
نشانی اینترنتی
http://jsaeh.khu.ac.ir/browse.php?a_code=A-10-828-1&slc_lang=fa&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
تخصصی
نوع مقاله منتشر شده
کاربردی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات