پردازش علائم و داده ها، جلد ۱۲، شماره ۱، صفحات ۳-۱۶

عنوان فارسی بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد
چکیده فارسی مقاله یادگیری منیفلد یکی از روش‌های کاهش بعد مطرح به‌منظور استخراج ساختار غیرخطی داده با ابعاد بالا می‌باشد. تاکنون روش‌های زیادی به این منظور ارائه شده‌اند. در تمام این روش‌ها یک منیفلد به‌عنوان منیفلد جاسازی‌شده در داده استخراج می‌شود. در‌حالی‌که در خیلی از مسائل مربوط به دنیای واقعی یک منیفلد به‌تنهایی بیانگر ساختار داده نمی‌باشد. در این راستا بر مبنای تحقیقات قبلی، یک روش کاهش بعد غیرخطی مبتنی بر شبکه‌های عصبی عمیق ارائه شده است که قادر به استخراج توأم منیفلدهای جاسازی شده در داده می‌باشد. در مدل شبکه عصبی تفکیک‌کننده منیفلدهای غیرخطی، برخلاف روش معمول استخراج منیفلد با شبکه‌های عصبی که به‌صورت بدون سرپرستی صورت می‌گیرد، از برچسب داده در جهت شکل‌گیری منیفلدها به‌صورت غیرمستقیم استفاده می‌شود. با توجه به ساختار عمیق این مدل نشان داده شده است که با بهره‌گیری از روش‌های پیش‌تعلیم می‌توان به‌طور معناداری عملکرد آن‌را بهبود بخشید. همچنین در راستای استخراج بهتر منیفلدها و حفظ تمایز درون‌منیفلدی برای طبقات مختلف، توابع معیار آن بهبود داده شده است. این مدل برای استخراج منیفلدهای حالت‌های احساسی و افراد از دادگان چهره CK+، مورد استفاده قرار گرفته است. با بهره‌گیری از پیش‌تعلیم لایه‌به‌لایه و بهبود توابع معیار، نرخ بازشناسی حالت برای تصاویر مجازی از 29/24% به 07/75% و درصد صحت بازشناسی هویت با یک تصویر از هر فرد با غنی‌سازی دادگان تعلیم طبقه‌بند KNN توسط این تصاویر مجازی، از 62/90% به 07/97% نسبت به مدل اولیه بهبود داشته‌ است.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Improving the nonlinear manifold separator model to the face recognition by a single image of per person
چکیده انگلیسی مقاله Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds. In this context, based on previous researches, this paper proposes a nonlinear dimension reduction method based on the deep neural network that extract simultaneously manifolds embedded in data. In nonlinear manifold separator model, unlike unsupervised learning of bottleneck neural network, data labels are indirectly used for manifold learning. Given the deep structure of the model, it has been shown that using pre-training methods can significantly improve its performance moreover, to improve within-manifold discrimination for different classes, its standard functions have been improved. This paper makes use of the model for extracting both expression and identity manifolds for facial images of the CK+ database. In comparing early and improved models, it is shown that the facial expression recognition rate from 24.29% to 75.07% and the face recognition rate by a single image of each person by enriching dataset from 90.62% to 97.07% were improved.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله سیده زهره سیدصالحی | seyyede zohreh seyyedsalehi


سیدعلی سیدصالحی | seyyed ali seyyedsalehi



نشانی اینترنتی http://jsdp.rcisp.ac.ir/browse.php?a_code=A-10-340-2&slc_lang=fa&sid=fa
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1315/article-1315-233360.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده مقالات پردازش تصویر
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات