International Journal of Engineering، جلد ۲۸، شماره ۹، صفحات ۱۲۶۸-۱۲۷۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
چکیده انگلیسی مقاله  Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness of the traditional ABC algorithm, in this paper, we propose an enhanced ABC algorithm with elite opposition-based learning strategy (EOABC). In the proposed EOABC, it executes the elite opposition-based learning strategy with a preset learning probability to enhance its exploitation capacity. In the numerical experiments, EOABC is tested on a set of numerical benchmark test functions, and is compared with some other ABCs. The comparisons confirm that EOABC can achieve competitive results on the majority of the benchmark test functions.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Dongming Jiang |
State Key Laboratory of Software Engineering, Wuhan University

Xuezhi Yue |
School of Science, JiangXi University of Science and Technology

Kangshun Li |
School of Information, South China Agricultural University

Shenwen Wang |
School of Information Engineering, Shijiazhuang University of Economics

Zhaolu Guo |
School of Science, JiangXi University of Science and Technology


نشانی اینترنتی http://www.ije.ir/article_72575_70e4a524d6423207b10211c27c8c6ea8.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2062446.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات