|
International Journal of Engineering، جلد ۲۸، شماره ۱۱، صفحات ۱۵۹۷-۱۶۰۴
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors |
|
چکیده انگلیسی مقاله |
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the location based feature. Next, the spectral clustering is implicated to categorize the similar behavioral features, and a new cluster fusion method which combines the obtained results of the clustering with the two lateral features is also proposed here. Then, in each cluster, the velocity and the trajectory are used as the object based features. In addition, the hidden Markov model is used as the behavior model. The most important outcome of this paper is that with the help of the mentioned object based features, we can detect the abnormal behaviors which cannot be identified using the previously reported location based features. Finally, a framework that performs abnormal behavior detection via statistical methods is presented. |
|
کلیدواژههای انگلیسی مقاله |
|
|
نویسندگان مقاله |
Hadi Seyedarabi | Electrical Engineering, Tabriz university
Asghar Feizi | Electrical Engineering, Damghan University
|
|
نشانی اینترنتی |
http://www.ije.ir/article_72615_c23b57154ebd8ad46d276be1e0cc90a7.pdf |
فایل مقاله |
اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2062414.pdf |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|