International Journal of Engineering، جلد ۳۰، شماره ۲، صفحات ۲۲۴-۲۳۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
چکیده انگلیسی مقاله This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programming (MILP) is considered then solved with the ε-constraint method in small-sized problems.The related results are compared with the results obtained by meta-heuristic algorithms.Furthermore, an effectivehybrid multi-objective teaching–learningbased optimization (HMOTLBO) algorithm is proposed, whose performance is compared with a non-dominated sorting genetic algorithm (NSGA-II) fortest problems generated at random. The associated results show that the proposed HMOTLBO outperformsthe NSGA-II in terms of different metrics.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Bahman Naderi |
industrial engineering department, kharazmi university

Reza Tavakkoli-Moghaddam |
Industrial Engineering, University of Tehran

Azam Sadati |
Department of Industrial Engineering, Islamic Azad University

Mohammad Mohammadi |
Department of Industrial Engineering, Kharazmi University


نشانی اینترنتی http://www.ije.ir/article_72880_fb404fe60084150a810e6ae2fa7a3d0e.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2062151.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات