این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۰، شماره ۱۰، صفحات ۱۴۹۴-۱۵۰۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
چکیده انگلیسی مقاله Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the features intended for construction of the final model. This paper proposes an innovative method called chain method, for evaluation of the given test record. The main intuition of our method is to concentrate merely on one attack type at every stage. In the beginning, datasets with the proposed features by GA based on different labels will be assembled. Based on a specific sequence– which is found on different permutation of four existed labels- the test record will be entered the chain module. If the first stage –which is correlated to the input sequence-, is able to diagnose the first label, the final output has been indicated. If is not, the records will pass through the next stage until the final output be obtained. Simulations on proposed chain method, illustrate this technique is able to outperform other conventional methods especially in R2L and U2R detection with the accuracy of 98.83% and 98.88% respectively.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Jamal Esmaily |
Computer Engineering, Shahid Rajaee Teacher Training University

Jamal Ghasemi |
Engineering and Technology, University of Mazandaran


نشانی اینترنتی http://www.ije.ir/article_73031_3242d2d3e8cd311caceb888f2abd6ece.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2061998.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات