این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 25 آبان 1404
International Journal of Engineering
، جلد ۳۱، شماره ۱۱، صفحات ۱۹۷۲-۱۹۸۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
چکیده انگلیسی مقاله
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibration signals and are collected using experimental test rig for different input parameters like load, speed and bearing conditions. These features are ranked using two techniques, namely Decision Tree (DT) and Randomized Lasso (R Lasso), which are further used to form training and testing input feature sets to machine learning techniques. It uses three ensemble machine learning techniques for AFB fault classification namely Random Forest (RF), Gradient Boosting Classifier (GBC) and Extra Tree Classifier (ETC). The impact of number of ranked features and estimators have been studied for ensemble techniques. The result showed that the classification efficiency is significantly influenced by the number of features but the effect of number of estimators is minor. The demonstrated ensemble techniques give more accuracy in classification as compared to tuned SVM with same experimental input data. The highest AFB fault classification accuracy 98% is obtained with ETC and DT feature ranking.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
S. Patil |
Centre of Excellence in Complex and Nonlinear Dynamical Systems (CoE-CNDS), Veermata Jijabai Technological Institute, Mumbai, India
V. Phalle |
Mechanical Engineering Department, Veermata Jijabai Technological Institute, Mumbai, India
نشانی اینترنتی
http://www.ije.ir/article_82254_da4a66f55af98abcd7e5f13872af0b58.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2061721.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات