این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Economic Review، جلد ۱۷، شماره ۳، صفحات ۱۳۹-۱۵۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Forecast of Iran’s Electricity Consumption Using a Combined Approach of Neural Networks and Econometrics
چکیده انگلیسی مقاله Electricity cannot be stored and needs huge amount of capital so producers and consumers pay special attention to predict electricity consumption. Besides, time-series data of the electricity market are chaotic and complicated. Nonlinear methods such as Neural Networks have shown better performance for predicting such kind of data. We also need to analyze other variables affecting electricity consumption so as to estimate their quantitative effects. This paper presents a new approach for forecasting: a combined method of Neural Networks (ANN) and econometrics methods which can also explain the effect of rising electricity prices on consumption after the Subsidies Reform Plan. Data is from 1988-2008, and the method is compared with Neural Network and ARIMA based on the RMSE performance function that shows the advantage of the combined approach. The provident prediction is done for 2009- 2014 and indicated that after decreasing subsidy, electricity consumption would increase slightly until 2014.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Mohammad Hossein Pourkazeni |
School of Economics and Political Sciences, University of Shahid Beheshti, Tehran, Iran.

Roya Aghaeifar |
School of Economics and Political Sciences, University of Shahid Beheshti, Tehran, Iran.


نشانی اینترنتی https://ier.ut.ac.ir/article_73502_d020180e21af890792d8f0e7f07c153e.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/434/article-434-2042994.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات