این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 10 آذر 1404
هوش محاسباتی در مهندسی برق
، جلد ۱۰، شماره ۱، صفحات ۳۱-۴۰
عنوان فارسی
استفاده از شبکههای عصبی ترکیبی و روش بهینهسازی آموزش جامع ازدحام ذرات بهمنظور پیشبینی کوتاهمدت بار الکتریکی
چکیده فارسی مقاله
پیشبینی کوتاهمدت بار الکتریکی همواره بهعنوان یکی از عناصر کلیدی در عملکرد اقتصادی و ایمن سیستمهای قدرت بهحساب میآید. در محیط رقابتی بازار برق، شرکتهای برق به رویکردهای دقیقتری برای پیشبینی بار بهمنظور گرفتن تصمیمات بهتر درزمینه خرید و یا تولید برق نیازمند هستند. در این مقاله روشی نوین برای پیشبینی کوتاهمدت بار الکتریکی بر مبنای یادگیری ماشینی ارائهشده است. این روش از یک فرایند انتخاب دادهی مؤثر دومرحلهای و یک موتور پیشبینی نوین تشکیل شده است. در بخش انتخاب داده مؤثر از دو فیلتر مجزای نامربوط بودن و زائد بودن برای انتخاب بهترین مجموعه دادههای ورودی استفاده شده است. در موتور پیشبینی پیشنهادی از یک ماشین بردار پشتیبان، شبکه عصبی ترکیبی و روش بهینهسازی آموزش جامع ازدحام ذرات، استفادهشده است. با بکارگیری روش بهینهسازی آموزش جامع ازدحام ذرات در کنار شبکه عصبی ترکیبی، دقت پیشبینی افزایش یافته و از خطای آن به میزان موثری کاسته میشود. رویکرد پیشنهادی در بازارهای برق PJM و AEMO مورد بررسی قرار گرفته است. نتایج عددی بهدستآمده، نشاندهندهی کارایی و توانایی قابلقبول این روش در مقایسه با آخرین روشهای ارائهشده درزمینه پیشبینی کوتاهمدت بار الکتریکی است.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Application of hybrid neural networks combined with comprehensive learning particle swarm optimization to short-term load forecasting
چکیده انگلیسی مقاله
Short term load forecasting is one of the key components for economical and safe operation of power systems. In competitive environment of electricity market, electricity utilities require more accurate load forecasting strategies to make better decisions on purchasing or generating electricity. This article offers a new method based on machine learning short-term load forecasting which is made up of a two-level feature selection technique and a new forecast engine. The feature selection part uses irrelevancy and redundancy filters to select best sets of input features. The proposed forecast engine is composed of a support vector regression machine, hybrid neural network and comprehensive learning particle swarm optimization. By applying comprehensive learning particle swarm optimization along with hybrid neural networks, the accuracy of forecasting is improved and its error decreases effectively.The proposed strategy is tested on PJM and AEMO electricity markets. The numerical results show the effectiveness and robustness of this method in comparison with recent short-term load forecasting methods.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
محمدرضا عمارتی |
دانشکده مهندسی برق و کامپیوتر، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته- کرمان- ایران
فرشید کی نیا |
پژوهشکده مدیریت و بهینهسازی انرژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی- کرمان- ایران
علیرضا عسکرزاده |
پژوهشکده مدیریت و بهینهسازی انرژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی- کرمان- ایران
نشانی اینترنتی
http://isee.ui.ac.ir/article_21744_8089b126fabf139bb6517e8f8f942468.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1306/article-1306-1610592.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات