این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Basic and Clinical Cancer Research، جلد ۱۰، شماره ۱، صفحات ۳۴-۴۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Analysis of MRI Images of the Liver, using a Combination of Wavelet and Principle Component Analysis (Pca) and Support Vector Machine (SVM) for the Diagnosis and Classification of Benign and Malignant Tumors
چکیده انگلیسی مقاله The accurate detection of abnormal liver tissues, using an automatic classification system with accurate results in medicine is a critical issue, for which so many methods have been proposed so far. In this study, first we analyzed the liver images prepared by MRI device, using wavelet in the frequency domain, differentiated them at different levels regarding resolution, extracted the features of the images. To increase algorithm speed we reduced features vector through a method called PCA, then the selected features were classified, using a method called SVM. In cross-validation stage, we used K-fold technique for generalization of the algorithm and four different kernels were implemented and then the results were compared. Ultimately, this hybrid algorithm showed the best results with Gaussian kernel. This method was compared with some of the previous methods, showing that it could produce good results in the classification of liver images and diagnosis of benign and malignant tumors, when there are few training data available, which can be used in medical diagnoses.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | Bahman Cheraghi Gharakhanloo
Department of computer enginering , Karaj Branch, Islamic Azad University, Karaj, Iran


| Bashir Bagheri Nakhjavanlo
Department of Mathematics and Computer , Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran


| Ali Mohammad Mohammadi
Islamic Azad University west Tehran branch, masters of artificial intelligence



نشانی اینترنتی http://bccr.tums.ac.ir/index.php/bccrj/article/view/259
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/151/article-151-1355009.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات