Iranian Journal of Fuzzy Systems، جلد ۲، شماره ۲، صفحات ۱-۱۳

عنوان فارسی INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
چکیده فارسی مقاله The proposed IAFC neural networks have both stability and plasticity because they
use a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.
The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzy
leaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzy
membership values. The supervised IAFC neural networks are the supervised neural networks
which use the fuzzified versions of Learning Vector Quantization (LVQ). In this paper,
several important adaptive learning algorithms are compared from the viewpoint of structure and
learning rule. The performances of several adaptive learning algorithms are compared using
Iris data set.
کلیدواژه‌های فارسی مقاله Neural Networks، Fuzzy logic، Fuzzy neural networks، Learning rule، Fuzzification،

عنوان انگلیسی INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
چکیده انگلیسی مقاله The proposed IAFC neural networks have both stability and plasticity because they
use a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.
The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzy
leaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzy
membership values. The supervised IAFC neural networks are the supervised neural networks
which use the fuzzified versions of Learning Vector Quantization (LVQ). In this paper,
several important adaptive learning algorithms are compared from the viewpoint of structure and
learning rule. The performances of several adaptive learning algorithms are compared using
Iris data set.
کلیدواژه‌های انگلیسی مقاله Neural Networks, Fuzzy logic, Fuzzy neural networks, Learning rule, Fuzzification

نویسندگان مقاله یونگ soo کیم | yong soo
division of computer engineering, daejeon university, daejeon, 300-716, korea

z zenn bien | zenn bien
department of elecrical engineering and computer science, kaist, daejeon, 305-701, korea


نشانی اینترنتی http://ijfs.usb.ac.ir/article_477_b026c6b686fee4da511735fefc3be005.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات