این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Mining and Geo-Engineering، جلد ۵۰، شماره ۱، صفحات ۱۲۱-۱۳۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks
چکیده انگلیسی مقاله Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 carbonate rock samples in different conditions at particular feed rates (100, 200, 300and 400) and depth of cuts (15, 22, 30and 35mm) using a fully instrumented laboratory rig that is enable to change the machine parameters and measure the ampere consumption. In next step, a back propagation neural network was designed for modelling the sawing process for predicting the ampere consumption. The input network consisting of two parts: machine, work piece characteristics and the output of neural network was ampere consumption. This research evaluated the competencies of neural networks to estimate the ampere consumption in sawing process. The correlation coefficient between measured and predicted data in training and testing data is 0.95 and 0.97 respectively. The root mean square error (RMSE) for train and test data is 1.2 and 0.7 respectively. The results of this study showed that the ANNs can be used to estimate the ampere consumption with high ability and low error for industrial applications. Moreover, the cost of sawing machine ampere consumption can be accurately estimated using this neural model from some important physical and mechanical properties of rock.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله احمد آریافر |
associate professor, faculty of engineering, department of mining engineering, university of birjand, birjand, iran, p.o.box 97175-376
سازمان اصلی تایید شده: دانشگاه بیرجند (Birjand university)

رضا میکاییل |
assistant professor, faculty of engineering, department of mining engineering urmia university of technology, urmia, iran
سازمان اصلی تایید شده: دانشگاه ارومیه (Urmia university)


نشانی اینترنتی http://ijmge.ut.ac.ir/article_57861_39751511594929e7820b40c0d5afb7ee.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات