این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 5 آبان 1404
Iranian Journal of Public Health
، جلد ۳۸، شماره ۱، صفحات ۷۴-۸۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparison of Neural Network and Principal Component-Regression Analysis to Predict the Solid Waste Generation in Tehran
چکیده انگلیسی مقاله
Background: Municipal solid waste (MSW) is the natural result of human activities. MSW generation modeling is of prime importance in designing and programming municipal solid waste management system. This study tests the short-term prediction of waste generation by artificial neural network (ANN) and principal component-regression analysis. Methods: Two forecasting techniques are presented in this paper for prediction of waste generation (WG). One of them, multivariate linear regression (MLR), is based on principal component analysis (PCA). The other technique is ANN model. For ANN, a feed-forward multi-layer perceptron was considered the best choice for this study. However, in this research after removing the problem of multicolinearity of independent variables by PCA, an appropriate model (PCA-MLR) was developed for predicting WG. Results: Correlation coefficient (R) and average absolute relative error (AARE) in ANN model obtained as equal to 0.837 and 4.4% respectively. In comparison whit PCA-MLR model (R= 0.445, MARE= 6.6%), ANN model has a better results. However, threshold statistic error is done for the both models in the testing stage that the maximum absolute relative error (ARE) for 50% of prediction is 3.7% in ANN model but it is 6.2% for PCA-MLR model. Also we can say that the maximum ARE for 90% of prediction in testing step of ANN model is about 8.6% but it is 10.5% for PCA-MLR model. Conclusion: The ANN model has better results in comparison with the PCA-MLR model therefore this model is selected for prediction of WG in Tehran.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
r نوری | r noori
dept. of environmental engineering, graduate faculty of environment, university of tehran, iran
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
ma عبدلی | ma abdoli
dept. of environmental engineering, graduate faculty of environment, university of tehran, iran
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
m جلیلی قاضی زاده | m jalili ghazizade
dept. of environmental engineering, graduate faculty of environment, university of tehran, iran
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
r سمیعی فرد | r samieifard
dept. of environmental engineering, graduate faculty of environment, university of tehran, iran
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
نشانی اینترنتی
http://ijph.tums.ac.ir/index.php/ijph/article/view/3214
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات