Journal of Petroleum Science and Technology، جلد ۷، شماره ۳، صفحات ۸۴-۹۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Prediction of Electrofacies Based on Flow Units Using NMR Data and SVM Method: a Case Study in Cheshmeh Khush Field, Southern Iran
چکیده انگلیسی مقاله The classification of well-log responses into separate flow units for generating local permeability models is often used to predict the spatial distribution of permeability in heterogeneous reservoirs. The present research can be divided into two parts; first, the nuclear magnetic resonance (NMR) log parameters are employed for developing a relationship between relaxation time and reservoir porosity as well as introducing the concept of relaxation group. This concept is then used for the definition of electrofacies in the studied reservoir. A graph-based clustering method, known as multi resolution graph-based clustering (MRGC), was employed to classify and obtain the optimum number of electrofacies. The results show that the samples with similar NMR relaxation characteristics were classified as similar groups. In the second part of the study, the capabilities of nonlinear support vector machine as an intelligent model is employed to predict the electrofacies and permeability distribution in the entire interval of the reservoir, where the NMR log parameters are unavailable. SVM prediction results were compared with laboratory core measurements, and permeability was calculated from stoneley wave analysis to verify the performance of the model. The predicted results are in good agreement with the measured parameters, which proves that SVM is a reliable tool for the identification of electrofacies through the conventional well log data.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله مهدی رستگارنیا |
department of petrophysics, pars petro zagros engineering amp; services company, tehran, iran

مهدی طالب پور |
department of petroleum engineering, islamic azad university, science and research branch, tehran, iran
سازمان اصلی تایید شده: دانشگاه آزاد اسلامی علوم و تحقیقات (Islamic azad university science and research branch)

علی صنعتی |
faculty of petrochemical and petroleum engineering, hakim sabzevari university, sabzevar, iran
سازمان اصلی تایید شده: دانشگاه حکیم سبزواری (Hakim sabzevari university)

سید حسن حاجی آبادی | seyed hassan
faculty of petrochemical and petroleum engineering, hakim sabzevari university, sabzevar, iran
سازمان اصلی تایید شده: دانشگاه حکیم سبزواری (Hakim sabzevari university)


نشانی اینترنتی http://jpst.ripi.ir/article_804_1e4932db3038e74484f0a6c42cc6068d.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/504/article-504-432882.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات