چکیده فارسی مقاله |
تلفیق تصاویر ماهوارهای و ایجاد دادههایی با قابلیت مکانی و طیفی بالاتر از دادههای موجود جایگاه و نقشی ویژه در مباحث سنجش از دور دارد. این درحالی است که دقت و کارآیی همۀ مراحل پردازش در مسیر استفاده از این دادهها به دقت و اعتمادپذیری دادۀ تولیدشده وابسته است. درنهایت، استفادۀ بهینه از تصویر تلفیقشده مبتنی بر دقت روش تلفیق است. بررسی این مهم به انتخاب درست شاخص ارزیابی، متناسب با هدف و حیطۀ کاربرد تصویر تلفیقشده، نیاز دارد. ارجحیت حفظ اطلاعات مکانی و طیفی درکاربردهای گوناگون، همچون منابع طبیعی، مناطق شهری و مانند آن، متفاوت است. بنابراین، انتخاب بهترین روش تلفیق با بررسی ازطریق شاخصهای ارزیابی کیفیت تصویر متناسب با حیطۀ کاربرد تصویر یکی از چالشهای کاربران در این زمینه است. ازاینرو، مقالۀ حاضر به آنالیز و ارزیابی بیست روش رایج ارزیابی کیفیت تصویر، با هدف معرفی شاخص مناسب در بین شاخص های مطرح براساس کاربرد تصویر تلفیقشده، معرفی عوامل تفاوت نظر شاخصها در بیان کیفیت و ارائۀ مدلی برای دریافتن توانای هریک از شاخصها در نمایش اعوجاجات رخداده در جنبۀ اطلاعات طیفی و مکانی تصویر پرداخته است. بدین منظور، دو شاخص فیلتر بالاگذر و زاویۀ نگاشت طیفی بهمنزلۀ مبنای اطلاعات مکانی و طیفی تصویر درنظر گرفته شد و عملکرد هریک از شاخص ها در بیان کیفیت دادههای شبیهسازیشده، که شامل تصاویری با اعوجاج طیفی و مکانی کنترل شده است، بررسی شد. برای ایجاد اعوجاج طیفی از اثر اعمال فیلتر بالاگذر، جابهجایی باند و تغییر تن رنگ بهره گرفته شده است. همچنین، از فیلتر پایینگذر و عملگرهای فرسایشی با عنصر ساختاری با ابعاد متفاوت برای مخدوش کردن اطلاعات مکانی استفاده شده است. در بررسیهای انجامشده در این تحقیق، از تصاویر ماهوارههای Landsat8،EO-1 وWorldview که قدرت تفکیک طیفی و مکانی متفاوت دارند، استفاده شد. از هر تصویر قطعاتی با کاربری اراضی متفاوت بهمنزلۀ تصاویر تست برش داده شد. نتیجۀ ارزیابی شاخصها روی تصاویر تست دستهبندی شاخصها، از نظر توانایی نمایش انحرافات طیفی و مکانی، در سه گروه قرار میگیرد. دستۀ نخست روشهای مبتنی بر نویز برای ارزیابی کلی تصویر در مقابل نویز است، شامل شاخصهای ERGAS، MSE، PSNR، WSNR. دستۀ دوم روشهای همسو با روش نگاشت زاویۀ طیفی« SAM» که بهدلیل نمایش بهتر انحرافات طیفی، برای برآورد تخریب اطلاعات طیفی تصویر مناسبتر است و شاخصهای BIAS, RASE, Q, MSSIM, NQM, FSIM, SRSIM, SAM را دربر میگیرد. دستۀ سوم شاخص همروند با شاخص فیلتر بالاگذر «HPF»، شامل شاخصهای MAD و RFSIM است که برای برآورد تخریب اطلاعات مکانی تصویر مناسبتر است. |
چکیده انگلیسی مقاله |
Satellite image fusion and creating data with spectral and spatial capabilities greater than those of the existing data is of special interest and position in Remote Sensing. However, the accuracy and efficiency of all processing stages of using these data depend on the precision and reliability of the produced data. The optimum utilization of fused images relies, ultimately, on the precision of the employed fusion method. Evaluation of this important aspect requires selection of an optimum assessment metric which is appropriate for the objectives and application areas of fused images. Different application areas such as, natural resources, civil areas and etc. have different preferences with regard to maintaining the spectral and spatial data. Therefore, selection of the best fusion method, that is appropriate for the application area of the image, through image quality assessment metrics is one of the users’ challenges in this field. The present paper, thus, attempts to provide an analysis and assessment of 20 common image quality assessment methods so as to identify and introduce the most optimum metrics based on the area of application of fused images. It also tries to introduce the factors causing differences in the way quality is assessed by the metrics. And then present a model for identifying the capabilities of each metric for displaying the distortions that occur in the spectral and spatial aspects of data. To this end, two metrics of high-pass filter and spectral angle mapper are taken into consideration as spectral and spatial data comparison bases, and the performance of metrics with regard to their assessment of the quality of simulated data, that contain images with controlled spectral and spatial distortions, is evaluated. Spectral distortions were introduced by high-pass filter effect, band displacement and changing color tone. Low-pass filter and attrition filters with structural elements of different dimensions were also used for introducing spatial distortions. Due to offering different spectral and spatial resolutions, images from Landsat8, EO-1, and Worldview satellites were used. Pieces with different land applications were cropped from these images to serve as test images. The assessment of the metrics tested on these images resulted in the categorization of metrics into three groups as per their capability for displaying spectral and spatial distortions. The first group included methods that functioned on the basis of noise for overall assessment of images with respect to their noise; these methods included ERGAS, MSE, PSNR, WSNR, and SNR indices. The second group were those aligned with Spectral Angular Mapper method that are suitable for assessment of images with sensitive applications as they display the spectral distortions with greater precision; These methods include BIAS, RASE, Q, MSSIM, NQM, FSIM, SRSIM, and SAM indices. The third group is also compatible with high-pass filter of HPF, RFSIM and MAD that are of a greater capability for displaying spatial distortions. |