Iranian Journal of Chemistry and Chemical Engineering، جلد ۴۴، شماره ۸، صفحات ۲۱۴۲-۲۱۵۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Exploring the Impact of Energy Independence through Innovative Technologies by Employing Machine Learning Analysis and Modeling for Control and Anti-Control
چکیده انگلیسی مقاله This study shows the impact of energy independence in the Philippines through innovative technologies, particularly Machine Learning (ML) analysis and modeling. Various countries have engaged in extensive discussions about a potential partnership with the Philippines, raising questions about whether this would be a unilateral or collaborative effort. Historically, the Philippines has depended heavily on external aid and security, limiting its ability to implement independent energy policies, especially in the vital energy sector. Despite receiving assistance, the country has faced significant challenges, including land reform, food security, and the modernization of energy practices, underscoring the complexities of external dependency and local development. Through a comprehensive analysis of historical data, this study explores the negotiations and compromises that shaped energy management and policy during this pivotal period. Utilizing an Artificial Neural Network (ANN), we investigate the relationships between factors influencing energy policy independence, food security, and land reform. The ANN effectively handled noisy training data and demonstrated versatility across various applications. Predictions indicated that fluctuations in aid dependence and self-reliance significantly impacted these outcomes. While the ANN required more training time compared to methods like decision trees, its predictions were validated through linear regression, confirming an acceptable error margin relative to experimental results.
کلیدواژه‌های انگلیسی مقاله Energy Policy,Food Security,Self-reliance,Neural Network modeling,Chemical Reactions,Asian countries

نویسندگان مقاله Cui Cuicui |
School of Wenshi, Weifang University, Weifang, 261061, P.R. CHINA


نشانی اینترنتی https://ijcce.ac.ir/article_725301_2d1567e449f0e28ed08f7eddba69395d.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات