|
International Journal of Engineering، جلد ۳۹، شماره ۶، صفحات ۱۳۰۵-۱۳۲۵
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Scenario-Based Stochastic Optimization of Perishable Goods Supply Chain Networks: Considering Disruption and Utilizing Machine Learning |
|
چکیده انگلیسی مقاله |
Perishable goods supply chains require advanced management due to demand fluctuations, time sensitivity, and disruptions. This study presents a data-driven model that optimizes the supply chain network by considering multiple disruption types and horizontal collaboration among distribution centers. Leveraging a rich dataset that includes uncertain parameters such as demand a fuzzy c-means clustering algorithm is employed to generate realistic scenarios, effectively reducing uncertainty and enhancing model accuracy. The primary innovations of this study include taking multiple disruption types and horizontal collaboration between distribution centers into account to improve supply chain resilience and utilizing two combined solution methods to increase computational efficiency. Computational results demonstrate that reliable distribution centers play the primary role in responding to baseline demand, whereas unreliable centers act as complementary centers. Furthermore, horizontal collaboration among the distribution centers reduces shortage costs and increases overall system resilience. This data-driven model can serve as an effective tool and aid supply chain management in making effective, optimal decisions when confronting disruptions and demand fluctuations by presenting an approach aimed at optimizing uncertainty management and enhancing resilience in perishable goods supply chains. |
|
کلیدواژههای انگلیسی مقاله |
Fuzzy C means Clustering,optimization,Resilience,Supply chain network,Two-Stage Stochastic Mode |
|
نویسندگان مقاله |
E. Vahabi | Department of Industrial Engineering, University of Science and Culture, Tehran, Iran
A. Jafari | Department of Industrial Engineering, University of Science and Culture, Tehran, Iran
R. Sahraeian | Department of Industrial Engineering, Faculty of Engineering, University of Shahed, Tehran, Iran
|
|
نشانی اینترنتی |
https://www.ije.ir/article_226135_b93e8b51caf0d5db3d3c2598803a8a71.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|