|
Journal of Artificial Intelligence and Data Mining، جلد ۱۳، شماره ۳، صفحات ۳۴۷-۳۵۸
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Discrete Rotated Isolation Forest in High Dimensions |
|
چکیده انگلیسی مقاله |
Anomaly detection is becoming increasingly crucial across various fields, including cybersecurity, financial risk management, and health monitoring. However, it faces significant challenges when dealing with large-scale, high-dimensional, and unlabeled datasets. This study focuses on decision tree-based methods for anomaly detection due to their scalability, interpretability, and effectiveness in managing high-dimensional data. Although Isolation Forest (iForest) and its extended variant, Extended Isolation Forest (EIF), are widely used, they exhibit limitations in identifying anomalies, particularly in handling normal data distributions and preventing the formation of ghost clusters. The Rotated Isolation Forest (RIF) was developed to address these challenges, enhancing the model's ability to discern true anomalies from normal variations by employing randomized rotations in feature space. Building on this approach, we proposed the Discrete Rotated Isolation Forest (DRIF) model, which integrates an Autoencoder for dimensionality reduction. Using a discrete probability distribution and an Autoencoder enhance computational efficiency. Experimental evaluations on synthetic and real-world datasets demonstrate that proposed model outperforms iForest, EIF, and RIF. And also achieving higher Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) scores and significantly faster execution times. These findings establish the proposed model as a robust, scalable, and efficient approach for unsupervised anomaly detection in high-dimensional datasets. |
|
کلیدواژههای انگلیسی مقاله |
anomaly detection,decision trees,Rotated Isolation Forests,large-scale high-dimensional data,Unsupervised learning |
|
نویسندگان مقاله |
Vahideh Monemizadeh | Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
Kourosh Kiani | Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
|
|
نشانی اینترنتی |
https://jad.shahroodut.ac.ir/article_3522_6bbc96c2ee73037e68387004fd94a63e.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|