International Journal of Engineering، جلد ۳۹، شماره ۳، صفحات ۷۰۵-۷۲۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Hybrid Ensemble Framework for Smart Irrigation: Optimizing Water Management in Precision Agriculture
چکیده انگلیسی مقاله Efficient water management is a critical challenge in precision agriculture, where traditional irrigation systems often rely on static schedules or conventional machine learning models with limited adaptability. These approaches struggle to balance accuracy, efficiency, and scalability, leading to suboptimal water distribution and resource usage. This research addresses these limitations by proposing an ensemble-based intelligent irrigation framework that integrates stacking models and a novel voting layer to enhance predictive accuracy, adaptability, and scalability. The methodology involves combining standalone machine learning algorithms, including Decision Tree, Random Forest, XGBoost, and Gradient Boost, with ensemble techniques such as stacking and voting. Additionally, a Long Short-Term Memory (LSTM) model is implemented to determine irrigation levels based on different crop types, providing further verification of the irrigation predictions. The framework prioritizes critical features like soil moisture, crop type, and growth stage to predict irrigation needs dynamically. Experimental evaluation on the Crop Irrigation Scheduling dataset demonstrates the model's effectiveness, achieving 99% accuracy—significantly outperforming other stand alone (best=96%) and ensemble approaches (best=95%). Compared to existing research and algorithms, the proposed model offers a transformative shift from static to adaptive irrigation strategies, providing a scalable and efficient solution for sustainable water management in agriculture.
کلیدواژه‌های انگلیسی مقاله Smart irrigation,Precision agriculture,Hybrid Model,Ensemble Methods,Irrigation level

نویسندگان مقاله M. Bastam |
Department of Computer Engineering, University of Mazandaran, Babolsar, Iran

D. Hashem Majeed |
Department of Computer Engineering, University of Mazandaran, Babolsar, Iran

M. Babagoli |
Department of Computer Engineering, University of Mazandaran, Babolsar, Iran


نشانی اینترنتی https://www.ije.ir/article_219662_5e33b5133a493d9a5dfea86f820ea2b8.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات