این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Fuzzy Systems، جلد ۲۲، شماره ۲، صفحات ۵۹-۸۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Fuzzy Radial Basis Function Least Square Policy Iteration: A Novel Critic-Only Reinforcement Learning Framework
چکیده انگلیسی مقاله In this paper, a new form of critic-only Reinforcement Learning algorithm for continuous state spaces control problems is proposed. Our approach, called Fuzzy-RBF Least Square Policy Iteration (FRLSPI), tunes the weight parameters of the fuzzy-RBF network (a hybrid model constituted by combining Takagi-Sugeno fuzzy rule inference system with RBF network) online and is acquired through combining Least Squares Policy Iteration (LSPI) with fuzzy-RBF network as a function approximator. In FRLSPI, based on the basis functions defined in the fuzzy-RBF network, a solution has been provided for the challenge of determining the state-action basis functions in LSPI. We also provide positive theoretical results concerning an error bound between the optimal and the approximated Action Value Function (AVF) for FRLSPI. Our proposed method has suitable features such as positive mathematical analysis, learning rate independency and, comparatively good convergence properties. Simulation studies regarding the mountain-car control task and acrobat problem demonstrate the applicability and performance of our learning framework. The overall results indicate that the proposed idea can outperform previously known reinforcement learning algorithms.
کلیدواژه‌های انگلیسی مقاله Fuzzy reinforcement learning,fuzzy-RBF network,generalization,Least Square Policy Iteration

نویسندگان مقاله Omid Mehrabi |
Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Ahmad Fakharian |
No. 35, 12th Alley, Khiabani Street Anshenasan Highway Tehran

Mehdi Siahi |
Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Amin Ramezani |
Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.


نشانی اینترنتی https://ijfs.usb.ac.ir/article_9076_b1ca15f31aeeaecba74ae3e2a1377030.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات