|
Sahand Communications in Mathematical Analysis، جلد ۲۲، شماره ۲، صفحات ۴۷-۷۲
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Contractive Fixed Points in a Rectangular Metric Space and Applications |
|
چکیده انگلیسی مقاله |
Branciari (2000) introduced the notion of a rectangular metric space ({it rms}) as a generalization of a metric space and proved the well-known Banach's contraction mapping theorem in an {it rms}, which was further generalized by Sarma et al. (2009) through a Ciric contraction. A fixed point $p$ of a self-map $f$ is a contractive fixed point (Edelstein, 1962), provided all the Picard's iterates $x,fx,f^2x, ldots $ converge to $p$. In the first part of the paper, contractive fixed points of Banach and Ciric contractions are established in a rectangular metric space. Usually, it is shown that an appropriate Picard's iterative sequence with an arbitrary seed converges to a point, which is a unique fixed point. Rather than relying on the standard iterative procedure, in the next part of the paper, unique fixed points are obtained for Banach, Hardy-Roger and Ciric's contractions in a rectangular metric space through the rectangle inequality and the greatest lower bound property of real numbers. In the last part of the paper, two elegant problems of Volterra integral equations are presented with the necessary MATLAB interpretation. |
|
کلیدواژههای انگلیسی مقاله |
Rectangular metric space,Contraction type mappings,Infimum Property,Fixed point,Contractive fixed point,Volterra integral equation |
|
نویسندگان مقاله |
G Shanmuga Sundari | Department of Mathematics, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
T Phaneendra | Department of Mathematics, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
|
|
نشانی اینترنتی |
https://scma.maragheh.ac.ir/article_719499_c9bf25a61d64bcb4983735d38e1ceef8.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|