International Journal of Mining and Geo-Engineering، جلد ۵۹، شماره ۱، صفحات ۱-۱۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Cu-bearing signatures from multi-element geochemical data, a correct strategy to implement a Convolutional Autoencoder Algorithm
چکیده انگلیسی مقاله Recent advancements in autoencoders and their variants have notably enhanced the detection of multi-element geochemical signatures linked to ore occurences. This research employed a convolutional autoencoder algorithm (CAE) to identify geochemical anomalies, leveraging the algorithm’s ability into account the spatial correlation within the geochemical dataset. In this framework, two stream sediment datasets were generated in the Feizabad district using a conceptual modelling approach alongside a big data analysis strategy. These datasets were individually fed into the CAE model to identify multi-element geochemical anomalies based on the reconstruction error in an unsupervised manner. A comparative analysis of two geochemical prospectivity models and the simplified geological map of Feizabad demonstrates a strong spatial correlation between the identified anomaly regions and known mineral occurrences, which are distributed across andesite, tuff, and Eocene-Oligocene intrusive rocks. However, a quantitative assessment using prediction-area plots indicates that the multi-element geochemical map derived from the conceptual model exhibits a higher prediction rate (72%) compared to the geochemical prospectivity map generated through the big data approach (63%).
کلیدواژه‌های انگلیسی مقاله Stream sediment geochemistry,Deep learning,Big data analytics,Unsupervised anomaly detection,Feizabad district

نویسندگان مقاله Mobin Saremi |
Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.

Seyyed Ataollah Agha Seyyed Mirzabozorg |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abbas Maghsoudi |
Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran.

Maysam Abedi |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Ramin DehghanNiri |
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.


نشانی اینترنتی https://ijmge.ut.ac.ir/article_99184_0ad2e7c5df44623a198e319f69e52af2.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات