|
Iranian Journal of Chemistry and Chemical Engineering، جلد ۴۳، شماره ۴، صفحات ۱۶۴۹-۱۶۶۲
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Data-Driven Prediction of Transesterification Reactions: Analyzing Zirconium-Based Metal-Organic Framework Catalysts with Machine Learning Models |
|
چکیده انگلیسی مقاله |
This research study focuses on the utilization of machine learning models to predict transesterification reactions using zirconium-based Metal-Organic Framework (MOF) as a catalyst. Various machine learning algorithms, including Multiple Linear Regression (MLR), Polynomial regression (PLR), Decision Tree (DT), Random Forest (RF), Adaboost (AB), XGBoost (XGB), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Artificial Neural Networks (ANN), were employed to analyze the collected data. The performance of each model was evaluated using mean accuracy and median accuracy metrics. Among the tested models, XGBoost exhibited the highest predictive accuracy, with a mean accuracy of 91.07% and a median accuracy of 96.72%. These results demonstrate that XGBoost effectively captures the intricate relationships between the input features and the outcomes of transesterification reactions. Furthermore, a feature importance analysis conducted using XGBoost revealed the relative significance of various factors in the reaction process. The analysis revealed that the preparation method held the highest importance. The factors ranked by importance were: preparation method, catalyst loading, alcohol type, reaction temperature, MOF, reaction time, acid functionalized, base functionalized, metal precursor, and linker. These findings enhance our understanding of transesterification reactions catalyzed by zirconium-based MOFs and highlight the effectiveness of machine learning models in predicting their outcomes. |
|
کلیدواژههای انگلیسی مقاله |
Transesterification reactions,Zirconium-based metal-organic framework,Machine Learning,XGBoost,predictive modeling,Feature importance |
|
نویسندگان مقاله |
A. Gnanapraksam | Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore – 641 014, Tamil Nadu, INDIA
M. Thirumarimurugan | Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore – 641 014, Tamil Nadu, INDIA
D. Gomathi | Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore – 641 014, Tamil Nadu, INDIA
|
|
نشانی اینترنتی |
https://ijcce.ac.ir/article_709263_ce7ddf36deaee77cce9fdb288cc9c299.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|