این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Mathematics Interdisciplinary Research، جلد ۹، شماره ۲، صفحات ۱۵۱-۱۶۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Improving Probabilistic Bisimulation for MDPs Using Machine Learning
چکیده انگلیسی مقاله ‎The utilization of model checking has been suggested as a formal verification technique for analyzing critical systems‎. ‎However‎, ‎the primary challenge in applying to complex systems is the state space explosion problem‎. ‎To address this issue‎, ‎bisimulation minimization has emerged as a prominent method for reducing the number of states in a system‎, ‎aiming to overcome the difficulties associated with the state space explosion problem‎. ‎For systems with stochastic behaviors‎, ‎probabilistic bisimulation is employed to minimize a given model‎, ‎obtaining its equivalent form with fewer states‎. ‎In this paper‎, ‎we propose a novel technique to partition the state space of a given probabilistic model to its bisimulation classes‎. ‎This technique uses the PRISM program of a given model and constructs some small versions of the model to train a classifier‎. ‎It then applies supervised machine learning techniques to approximately classify the related partition‎. ‎The resulting partition is then used to accelerate the standard bisimulation technique‎, ‎significantly reducing the running time of the method‎. ‎The experimental results show that the approach can decrease significantly the running time compared to state-of-the-art tools‎.
کلیدواژه‌های انگلیسی مقاله Probabilistic bisimulation‎, ‎Markov decision process‎, ‎Model checking‎, ‎Machine learning‎, ‎Support Vector Machine

نویسندگان مقاله Mohammadsadegh Mohagheghi |
‎Department of Computer Science, ‎Vali-e-Asr University of Rafsanjan, ‎Rafsanjan‎, ‎I‎. ‎R‎. ‎Iran

Khayyam Salehi |
‎Department of Computer Science, Shahrekord University, ‎Shahrekord‎, ‎I‎. ‎R‎. ‎Iran


نشانی اینترنتی https://mir.kashanu.ac.ir/article_114322_d21590eb7919d74be95308a790bc5283.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات