این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Mathematics Interdisciplinary Research
، جلد ۹، شماره ۲، صفحات ۱۵۱-۱۶۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Improving Probabilistic Bisimulation for MDPs Using Machine Learning
چکیده انگلیسی مقاله
The utilization of model checking has been suggested as a formal verification technique for analyzing critical systems. However, the primary challenge in applying to complex systems is the state space explosion problem. To address this issue, bisimulation minimization has emerged as a prominent method for reducing the number of states in a system, aiming to overcome the difficulties associated with the state space explosion problem. For systems with stochastic behaviors, probabilistic bisimulation is employed to minimize a given model, obtaining its equivalent form with fewer states. In this paper, we propose a novel technique to partition the state space of a given probabilistic model to its bisimulation classes. This technique uses the PRISM program of a given model and constructs some small versions of the model to train a classifier. It then applies supervised machine learning techniques to approximately classify the related partition. The resulting partition is then used to accelerate the standard bisimulation technique, significantly reducing the running time of the method. The experimental results show that the approach can decrease significantly the running time compared to state-of-the-art tools.
کلیدواژههای انگلیسی مقاله
Probabilistic bisimulation, Markov decision process, Model checking, Machine learning, Support Vector Machine
نویسندگان مقاله
Mohammadsadegh Mohagheghi |
Department of Computer Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, I. R. Iran
Khayyam Salehi |
Department of Computer Science, Shahrekord University, Shahrekord, I. R. Iran
نشانی اینترنتی
https://mir.kashanu.ac.ir/article_114322_d21590eb7919d74be95308a790bc5283.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات