این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Mathematics Interdisciplinary Research، جلد ۱، شماره ۲، صفحات ۲۹۱-۳۰۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
چکیده انگلیسی مقاله In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in the literature show the efficiency and high accuracy of the proposed method. In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in the literature show the efficiency and high accuracy of the proposed method. In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in the literature show the efficiency and high accuracy of the proposed method.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله اکبر محبی |
university of kashan
سازمان اصلی تایید شده: دانشگاه کاشان (Kashan university)

زهرا فراز |
university of kashan
سازمان اصلی تایید شده: دانشگاه کاشان (Kashan university)


نشانی اینترنتی http://mir.kashanu.ac.ir/article_15512_03220e30f6a42be0f9a38bbda60c68f2.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/2296/article-2296-304853.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات