این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Petroleum Science and Technology، جلد ۱۳، شماره ۲، صفحات ۱۲-۱۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Advancing Predictive Analytics for Gas Sweetening Plants Through Machine Learning and Feature Selection
چکیده انگلیسی مقاله Predictive models employing random forest regression and support vector machines (SVMs) were developed to predict output parameters in an industrial natural gas sweetening plant. Extensive data comprising 550 input/output variables from a gas processing facility in western Iran was leveraged to construct and evaluate the models. The key output forecast was rich amine loading (mole of acid gas per mole of amine). The dataset was partitioned into training (80%), optimization (10%), and testing (10%) subsets after normalization. An R-squared value of 0.97 and a Mean Absolute Error (MAE) of 0.008 were achieved by the random forest regression, outperforming SVM’s R-squared score of 0.91 with an associated MAE of 0.012. Furthermore, the random forest model was optimized using particle swarm optimization (PSO), a metaheuristic technique. The pivotal innovation entails exploiting comprehensive empirical data with hundreds of variables to build data-driven models capable of exceptional predictive fidelity exceeding 0.9 R-squared. This research establishes random forest regression, especially after optimization with PSO, as a highly efficacious and robust methodology for the simulation and optimization of natural gas treating plants
کلیدواژه‌های انگلیسی مقاله Petroleum, Gas Sweetening Plant, Machine Learning, Random Forest, Particle Swarm Optimization

نویسندگان مقاله Amir Hossein Rahaei |
Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran

Saeid Shokri |
Digital Transformation Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Mohammad Ali Aroon Ali Aroon |
Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran

Hossein Abolghasemi |
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Saeid Zarrabi |
Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Iran


نشانی اینترنتی https://jpst.ripi.ir/article_1379_e6caa66072ab45b46d40cd16cd3cf673.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات