Journal of Petroleum Science and Technology، جلد ۱۳، شماره ۱، صفحات ۶۲-۶۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Wellbore Instability Prediction by Geomechanical Behavioral Modeling in Zilaie Oil Field
چکیده انگلیسی مقاله Wellbore instability is a critical problem during oil and gas reservoirs’ drilling and production phase, for which analytical, numerical, experimental, and field methods have been widely discussed. Because of the limitations of the mentioned techniques for predicting the different types of wellbore failures, the problem is still open. Although well logs provide a great source of big data for instability prediction, data-mining techniques have not matured in this domain. This paper explains how an AI-based method can be applied to instability detection/prediction. Unlike other data mining studies in this field, we proposed a systematic approach that can be traceable by the readers. We used several classification algorithms (e.g., Bayesian network, SVM) and found that the C5 decision tree algorithm has the best precision. We show the effectiveness of the method by applying the method to a dataset with about 30,000 records of wellbore logs, getting an accuracy of 91.5%.
کلیدواژه‌های انگلیسی مقاله Wellbore Stability, Well Log, Data mining, AI prediction

نویسندگان مقاله Amin Tohidi |
Department of Geotechnics, Islamic Azad University, Central Tehran branch, Tehran, Iran

Arash Ebrahimabadi |
Department of Petroleum, Mining and Material Engineering, Islamic Azad University, Central Tehran branch, Tehran, Iran

Atefeh Musavi |
Cyberspace Research Institute, Shahid Beheshti University, Tehran, Iran


نشانی اینترنتی https://jpst.ripi.ir/article_1354_676131a01cef11e92960a5ff72849b17.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات