این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Aerospace Science and Technology، جلد ۱۶، شماره ۲، صفحات ۶۱-۷۳

عنوان فارسی Guidance law design for the final stage of the orbit injection problem
چکیده فارسی مقاله In this paper, optimal guidance law design considering fixed final state and time for the final phase a spacecraft or launch vehicle is investigated and studied. This guidance law, not only satisfied a specific optimality criterion, but it also has the least sensitivity to the initial state’s deviations; which is due to the inclusion of the nonlinear terms in the mathematical modeling using the high order expansions method. The main goal of this research, is to investigate the development and to augment the capability of the high order expansions method for guidance law design. Different implementations of this approach including the differential algebra high order, the generating function based high order and vectorized high order expansions methods have been investigated. After reviewing the implementation concepts of the high order expansions method, the effectiveness of this method has been studied. Then a 3-dimensional injection of a satellite problem has been chosen as the case study and after extracting the mathematical model and nominal optimal solution, the sensitivity variables have been extracted up to the 3rd order. Afterwards, to investigate the performance of the designed guidance law, the Monte Carlo simulations have been performed and it has been shown that the designed guidance law on the basis of the Taylor series and high order expansions method has a good accuracy and is a valuable alterative to the nominal trajectory tracking guidance approach.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Guidance law design for the final stage of the orbit injection problem
چکیده انگلیسی مقاله In this paper, optimal guidance law design considering fixed final state and time for the final phase a spacecraft or launch vehicle is investigated and studied. This guidance law, not only satisfied a specific optimality criterion, but it also has the least sensitivity to the initial state’s deviations; which is due to the inclusion of the nonlinear terms in the mathematical modeling using the high order expansions method. The main goal of this research, is to investigate the development and to augment the capability of the high order expansions method for guidance law design. Different implementations of this approach including the differential algebra high order, the generating function based high order and vectorized high order expansions methods have been investigated. After reviewing the implementation concepts of the high order expansions method, the effectiveness of this method has been studied. Then a 3-dimensional injection of a satellite problem has been chosen as the case study and after extracting the mathematical model and nominal optimal solution, the sensitivity variables have been extracted up to the 3rd order. Afterwards, to investigate the performance of the designed guidance law, the Monte Carlo simulations have been performed and it has been shown that the designed guidance law on the basis of the Taylor series and high order expansions method has a good accuracy and is a valuable alterative to the nominal trajectory tracking guidance approach.
کلیدواژه‌های انگلیسی مقاله Vectorized high order expansions. Nonlinear Optimal control,Orbital injection,Optimal guidance

نویسندگان مقاله Morteza Sharafi |
Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology, Iran

Mahdi Jafari |
Faculty of Aerospace, Malek Ashtar University of Technology, Iran,

Mojtaba Alavipour |
Faculty of Aerospace K.N.Toosi University of Technology, Iran


نشانی اینترنتی https://jast.ias.ir/article_170855_06e5871fb94c96de9ff6016734a7efd8.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات