|
Iranian Journal of Chemistry and Chemical Engineering، جلد ۴۲، شماره ۵، صفحات ۱۶۴۸-۱۶۶۴
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Estimation of Surface Tension of Aqueous Polymer Solutions Using Soft Computing Approaches |
|
چکیده انگلیسی مقاله |
The surface tension of aqueous polymer solutions is an important property that plays a vital role in mass and heat transfer. In this study, the surface tension of a polymer mixture is modeled using four algorithms (Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive group of Ink Drop Spread (AGIDS) ) which has been developed in the soft-computing domain. In this paper, four models for predicting the surface tension are applied and the results were compared with our published experimental data and it was found that the predictions of these models fit the experimental data very accurately. Also, a comparison has been done to evaluate the effectiveness of the relevant four algorithms in the current problem. The simulation results have shown that ANFIS and RBF model predictions are more accurate than the two others in the current problem. |
|
کلیدواژههای انگلیسی مقاله |
Soft-computing,prediction,Surface tension,Polymer solution |
|
نویسندگان مقاله |
Iman Esmaili Paeen Afrakotia | Faculty of Technology and Engineering, University of Mazandaran, Babolsar, I.R. IRAN
Ali Akbar Amooey | Faculty of Technology and Engineering, University of Mazandaran, Babolsar, I.R. IRAN
|
|
نشانی اینترنتی |
https://ijcce.ac.ir/article_696629_72e0acc26212203a1a48524121c2eb8d.pdf |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|