این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 9 آذر 1404
International Journal of Coastal and Offshore Engineering
، جلد ۸، شماره ۱، صفحات ۱۰-۱۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Underwater Ship-radiated Acoustic Noise Recognition Based on Mel-Spectrogram and Convolutional Neural Network
چکیده انگلیسی مقاله
The abstract should include the One of the most exciting topics for researchers over the past few years is detecting underwater acoustic noises. Meanwhile, the complicated nature of the ocean makes this task very challenging. Also, making signals formatted data compatible with machine learning approaches needs much knowledge in signal processing for feature detection. This paper proposed a method to overcome these challenges, which extracts features with Convolutional Neural Network (CNN) and Mel-spectrogram (converting signal data to images). This method needless knowledge in signal processing and more knowledge in machine learning; because using CNNs find the hidden pattern and knowledge of the data automatically. The proposed approach detected the presence of the ships and categorized them into different kinds of them with 99% accuracy that is a noticeable improvement considering state of the art. The performed CNN models consist of 2 CNN layers for feature extraction and a Dense layer for classification the underwater ship noises.
کلیدواژههای انگلیسی مقاله
Underwater Acoustic,Deep Learning,recognition,Noise,CNN
نویسندگان مقاله
Mohammad Reza Khalilabadi |
Faculty of Naval Aviation, Malek Ashtar University of Technology
نشانی اینترنتی
https://www.ijcoe.org/article_166732_c23d6006a6eea6559b814eaa28068b9a.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات