این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Energy Equipment and Systems، جلد ۱۰، شماره ۱، صفحات ۷۳-۸۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Convolutional neural networks for wind turbine gearbox health monitoring
چکیده انگلیسی مقاله Between different sources of renewable energy, wind energy, as an economical source of electrical power, has undergone a pronounced thriving. However, wind turbines are exposed to catastrophic failures, which may bring about irrecoverable ramifications. Therefore, they necessarily need condition monitoring and fault detection systems. These systems aim to reduce the number of attempts operators are required to do through the use of smart software algorithms, which are able to understand and decide with no human involvement. The gearboxes are usually responsible for the WT breakdowns. In this paper, convolutional neural networks are employed to develop an intelligent data-based condition-monitoring algorithm to differentiate healthy and damaged conditions that are evaluated with the national renewable energy laboratory (NREL) GRC database on the WT gearbox. Since it is much easier for convolutional neural networks to extract clues from high dimensional data, time-domain signals are embodied as texture images. Results show that the proposed methodology by utilizing a 2-D convolutional neural network for binary classification is capable of classifying the NREL GRC database with 99.76% accuracy.
کلیدواژه‌های انگلیسی مقاله Wind Turbine,Gearbox Condition Monitoring,Convolutional Neural Networks (CNN),Imaging Time-Series

نویسندگان مقاله Samira Zare |
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Moosa Ayati |
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Mohammad Reza Ha'iri Yazdi |
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Amin Kabir Anaraki |
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran


نشانی اینترنتی https://www.energyequipsys.com/article_251289_86d7c6940c951c019e8d4cb0a139274c.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات