این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 3 آبان 1404
Tanaffos
، جلد ۸، شماره ۲(spiring)، صفحات ۴۶-۵۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Clinical Analysis of EEG Parameters in Prediction of the Depth of Anesthesia in Different Stages: A Comparative Study
چکیده انگلیسی مقاله
Background: Evaluation of depth of anesthesia is especially important in adequate and efficient management of patients. Clinical assessment of EEG in the operating room is one of the major difficulties in this field. This study aims to find the most valuable EEG parameters in prediction of the depth of anesthesia in different stages. Materials and Methods: EEG data of 30 patients with same anesthesia protocol (total intravenous anesthesia) were recorded in all anesthetic stages in Shohada-e-Tajrish Hospital. Quantitative EEG characteristics are classified into 4 categories of time, frequency, bispectral and entropy-based characteristics. Their sensitivity, specificity and accuracy in determination of depth of anesthesia were yielded by comparing them with the recorded reference signals in awake, light anesthesia, deep anesthesia and brain dead patients. Results: Time parameters had low accuracy in prediction of the depth of anesthesia. The accuracy rate was 75% for burst suppression response. This value was higher for frequency- based characteristics and the best results were obtained in ß spectral power (accuracy: 88.9%). The accuracy rate was 89.9% for synch fast slow bispectral characteristics. The best results were obtained from entropy-based characteristics with the accuracy of 99.8%. Conclusion: Analysis of the entropy-based characteristics had a great value in predicting the depth of anesthesia. Generally, due to the low accuracy of each single parameter in prediction of the depth of anesthesia, we recommend multiple characteristics analysis with greater focus on entropy-based characteristics. (Tanaffos 2009; 8(2): 46-53)
کلیدواژههای انگلیسی مقاله
Anesthesia,Analysis,Electroencephalogram
نویسندگان مقاله
Noor Mohammad Arefian |
Department of Anesthesiology,
Ali Reza Zali |
Department of Neurosurgery, Shohada-e-Tajrish Hospital,
Amir Saeid Seddighi |
Department of Neurosurgery, Shohada-e-Tajrish Hospital,
Mohammad Fathi |
Department of Anesthesiology,
Hooman Teymourian |
Department of Anesthesiology,
Shideh Dabir |
Department of Anesthesiology,
Badiolzaman Radpay |
Department of Anesthesiology,
نشانی اینترنتی
https://www.tanaffosjournal.ir/article_241223_c89dae61b6dbfd2021113e7451d12765.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات