این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 14 بهمن 1404
Iranian Journal of Public Health
، جلد ۵۲، شماره ۱۱، صفحات ۲۴۰۲-۲۴۱۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Textual Analysis of Tweets Associated with Domestic Violence
چکیده انگلیسی مقاله
Background: Domestic violence is a global public health concern as stated by World Health Organization. We aimed to conduct a textual analysis of tweets associated with domestic violence through keyword identification, word trends and word collocations. The data was obtained from Twitter, focusing on publicly available tweets written in English. The objectives are to find out if the identified keywords, word trends and word collocations can help differentiate between domestic violence-related tweets and non-domestic violence-related tweets, as well as, to analyze the textual characteristics of domestic violence-related tweets and non-domestic violence-related tweets. Methods: Overall, 11,041 tweets were collected using a few keywords over a period of 15 days from 22 March 2021 to 5 April 2021. A text analysis approach was used to discover the most frequent keywords used, the word trends of those keywords and the word collocations of the keywords in differentiating between domestic violence-related or non-domestic violence-related tweets. Results: Domestic violence-related tweets and non-domestic violence-related tweets had differentiating characteristics, despite sharing several main keywords. In particular, keywords like “domestic”, “violence” and “suicide” featured prominently in domestic-violence related tweets but not in non-domestic violence-related tweets. Significant differences could also be seen in the frequency of keywords and the word trends in the collection of the tweets. Conclusion: These findings are significant in helping to automate the flagging of domestic-violence related tweets and alert the authorities so that they can take proactive steps such as assisting the victims in getting medical, police and legal help as needed.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Stephanie Chua
Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| Janice anak Sabang
Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| Keng Sheng Chew
Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Sarawak, Malaysia
| Puteri Nor Ellyza binti Nohuddin
Institute of IR 4.0, Universiti Kebangsaan Malaysia, Selangor, Malaysia
نشانی اینترنتی
https://ijph.tums.ac.ir/index.php/ijph/article/view/28413
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات