Journal of Biostatistics and Epidemiology، جلد ۹، شماره ۱، صفحات ۲۰-۲۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Random-Splitting Random Forest with Multiple Mixed-Data Covariates
چکیده انگلیسی مقاله Background: The bagging (BG) and random forest (RF) are famous supervised statistical learning methods based on classification and regression trees. The BG and RF can deal with different types of responses such as categorical, continuous, etc. There are curves, time series, functional data, or observations that are related to each other based on their domain in many statistical applications. The RF methods are extended to some cases for functional data as covariates or responses in many pieces of literature. Among them, random-splitting is used to summarize the functional data to the multiple related summary statistics such as average, etc. Methods: This research article extends this method and introduces the mixed data BG (MD-BG) and RF (MD-RF) algorithm for multiple functional and non-functional, or mixed and hybrid data, covariates and it calculates the variable importance plot (VIP) for each covariate. Results: The main differences between MD-BG and MD-RF are in choosing the covariates that in the first, all covariates remain in the model but the second uses a random sample of covariates.  The MD-RF helps to unmask the most important parts of functional covariates and the most important non-functional covariates. Conclusions: We apply our methods on the two datasets of DTI and Tecator and compare their performances for continuous and categorical responses with the developed R package (“RSRF”) in the GitHub.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | Mohammad Fayaz
Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran


| Alireza Abadi
Department of Community Medicine, Faculty of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran


| Soheila Khodakarimd
Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran



نشانی اینترنتی https://jbe.tums.ac.ir/index.php/jbe/article/view/1071
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات