این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 شهریور 1404
مدیریت فناوری اطلاعات
، جلد ۱۴، شماره Special Issue: ۵th International Conference of Reliable Information and Communication Technology (IRICT ۲۰۲۰)، صفحات ۲۰۳-۲۲۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Filter-Based Feature Selection Using Information Theory and Binary Cuckoo Optimisation Algorithm
چکیده انگلیسی مقاله
Dimensionality reduction is among the data mining process that is used to reduce the noise and complexity of features in various datasets. Feature selection (FS) is one of the most commonly used dimensionalities that reduces the unwanted features from the datasets. FS can be either wrapper or filter. Wrappers select subsets of the feature with better classification performance but are computationally expensive. On the other hand, filters are computationally fast but lack feature interaction among selected subsets of features which in turn affect the classification performance of the chosen subsets of features. This study proposes two concepts of information theory mutual information (MI). As well as entropy (E). Both were used together with binary cuckoo optimization algorithm BCOA (BCOA-MI and BCOA-EI). The target is to improve classification performance (reduce the error rate and computational complexity) on eight datasets with varying degrees of complexity. A support vector machine classifier was used to measure and computes the error rates of each of the datasets for both BCOA-MI and BCOA-E. The analysis of the results showed that BCOA-E selects a fewer number of features and performed better in terms of error rate. In contrast, BCOA-MI is computationally faster but chooses a larger number of features. Comparison with other methods found in the literature shows that the proposed BCOA-MI and BCOA-E performed better in terms of accuracy, the number of selected features, and execution time in most of the datasets.
کلیدواژههای انگلیسی مقاله
Feature Selection,Filter-Based,Binary Cuckoo Optimization,information theory
نویسندگان مقاله
Ali Muhammad Usman |
chool of Computer Sciences, University Sains Malaysia 11800 Pulau Pinang, Malaysia; Department of Computer Sciences, Federal College of Education (Technical) Gombe, Nigeria
Umi Kalsom Yusof |
Assistant Professor, School of Computer Sciences, University Sains Malaysia 11800 Pulau Pinang, Malaysia.
Maziani Sabudin |
School of Computer Sciences, University Sains Malaysia 11800 Pulau Pinang, Malaysia.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_84900_0a6603fdfdf3514291700cf7edb1497b.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات