این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۴، شماره Special Issue: ۵th International Conference of Reliable Information and Communication Technology (IRICT ۲۰۲۰)، صفحات ۱۱۴-۱۲۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Deep-Learning-CNN for Detecting Covered Faces with Niqab
چکیده انگلیسی مقاله Detecting occluded faces is a non-trivial problem for face detection in computer vision. This challenge becomes more difficult when the occlusion covers majority of the face. Despite the high performance of current state-of-the-art face detection algorithms, the detection of occluded and covered faces is an unsolved problem and is still worthy of study. In this paper, a deep-learning-face-detection model Niqab-Face-Detector is proposed along with context-based labeling technique for detecting unconstrained veiled faces such as faces covered with niqab. An experimental test was conducted to evaluate the performances of the proposed model using the Niqab-Face dataset. The experiment showed encouraging results and improved accuracy compared with state-of-the-art face detection algorithms
کلیدواژه‌های انگلیسی مقاله Face-detection,Object-detection,Computer Vison,Deep learning,Artificial Intelligence,Convolutional Neural Network

نویسندگان مقاله Abdulaziz A. Alashbi |
Ph.D. Candidate, Media and Game Innovation Centre of Excellence, Institute of Human Centered Engineering, University Technology Malaysia, 81310 Skudai, Johor, Malaysia. 2School of Computing, Faculty of Engineering, University Technology Malaysia, 81310, Skudai, Johor, Malaysia.

Mohd Shahrizal Sunar |
Professor, Media and Game Innovation Centre of Excellence, Institute of Human Centered Engineering, University Technology Malaysia, 81310 Skudai, Johor, Malaysia. 2School of Computing, Faculty of Engineering, University Technology Malaysia, 81310, Skudai, Johor, Malaysia.

Zieb Alqahtani |
Ph.D. Candidate, Media and Game Innovation Centre of Excellence, Institute of Human Centered Engineering, University Technology Malaysia, 81310 Skudai, Johor, Malaysia.


نشانی اینترنتی https://jitm.ut.ac.ir/article_84888_a3b5d00476d6628dea08b1dcf27a9c27.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات